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Abstract—Lip reading can help people with speech disorders to communicate with others and provide them with a new channel to
interact with the world. In this paper, we design and implement HearMe, an accurate and real-time lip-reading system built on
commercial RFID devices. HearMe can be used to accurately recognize different words in a pre-defined vocabulary without limitations
in light conditions and can be used in multiple user scenarios by leveraging RFID’s ability in identifying different users. We design an
effective data collection strategy to well capture the tiny and complex signal patterns caused by mouth motion and propose a set of
algorithms to extract signal profiles related to mouth motions and mitigate interference factors like multi-path. A carefully designed set
of features, including time-domain statistical features and frequency-domain features, are then extracted from the signal to lift the
recognition accuracy at the word level. To reduce training costs when the model is used in a new environment, a
transfer-learning-based approach is adopted to enhance the robustness of the model in cross-environment scenarios. Experimental
results show that HearMe detects speaking actions of the user with an accuracy higher than 0.95 and recognizes different words in a
20-words vocabulary with an average accuracy higher than 0.88. Moreover, the latency of HearMe (∼150ms) is nearly two orders of
magnitude less than traditional approaches, making it applicable to practical scenarios that require real-time lip reading.

Index Terms—RFID sensing, wireless sensing, lip reading, real time
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1 INTRODUCTION

AUTOMATIC lip reading has been studied for a long
time to benefit people with difficulties in speaking

and hearing [1], [2]. According to the statistics of the World
Health Organization (WHO) [3], there are approximately 70
million deaf-mute people in the world. Automatic lip read-
ing can help them enhance their ability in communicating
with others and performing daily tasks. It also provides a
new channel for those people to better interact with the
world [1], [2]. Lip reading also benefits normal people in
environments where speaking loudly is inappropriate (e.g.,
in a meeting room) [2]. Recently, lip reading has also been
exploited as a new approach to biometric-based authentica-
tion for mobile devices [4], [5].

Traditional approaches to automatic lip reading are gen-
erally based on vision analysis [6]–[8]. These approaches
are sensitive to light conditions and cannot be used in dark
environments. Some other works require the user to attach
special sensors [9], [10], which are intrusive and inconve-
nient to use. Recently, non-intrusive lip reading approaches
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based on acoustic signals [2], [4], [5], or wireless signals [11]
are proposed. The general idea is to capture signal profiles
related to different mouth motions and use classification
methods to recognize what words the user is speaking1.
These approaches have some limitations that prevent them
from being widely adopted in practice. For example, the
approaches based on acoustic signals are not convenient
to use in daily life as they usually require the user to
hold the smartphone in a fixed position [2]. WiFi-based
approaches [11] have a relatively large operational range,
but they are not suitable in multiple user scenarios because
it is difficult to distinguish signals from different users.
Moreover, existing approaches usually use dynamic time
wrapping (DTW) to match different month motion profiles,
which is very time-consuming and thus not applicable to
practical scenarios that require real-time services.

In this paper, we design and implement an accurate
and real-time lip-reading system based on commercial radio
frequency identification (RFID) devices, namely HearMe.
HearMe recognizes what word the user tries to convey from
a predefined vocabulary. HearMe is superior to existing con-
tactless lip-reading approaches by simultaneously provid-
ing three merits. First, different from vision-based approach-
es [6], [7], HearMe uses wireless signals to detect mouth
motions and thus is insensitive to light conditions and ap-
plicable to more pervasive environments. Second, HearMe
has a relatively large operational range of up to several
meters and thus is more convenient to use than acoustic-
based approaches for which the operational ranges are very

1. For simplicity in presentation, we call the user’s action when he
tries to convey a word as speaking, although the user does not make
sound.
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limited (∼10 cm). Third, the ability of RFID in identifying
different objects enables HearMe to track multiple users and
perform lip reading for them simultaneously. In contrast,
multiple user tracking is difficult in WiFi-based approaches
[11], [12] as it is difficult to map signals to individual users.
Moreover, HearMe is implemented on commercial devices.
It neither needs any modifications to low-layer drivers such
as Wi-Fi-based approaches [11], [13] nor requires specially
designed radios like frequency-modulated continuous-wave
(FMCW) radar [14].

There are several challenges in implementing HearMe.
First, compared to other activities such as gestures or arm
activities [10], [15], [16], the mouth motions caused by the
user’s speaking actions are very tiny, and consequently, the
signal fluctuations caused by mouth motions are also weak.
How to capture the signal patterns caused by the user’s “s-
peaking” actions and correctly separate the signal segments
related to mouth motions from the collected data is thus
challenging. Second, how to design a set of representative
features based on which different words can be accurately
recognized is also a challenging problem. Third, when the
environment changes, the accuracy of RFID-based activity
recognition will be severely affected [15], [17]. We need to
enhance the generalization ability of HearMe in different
scenarios to make it suitable for daily usage.

We address these challenges with the following novel
designs. First, we design an effective data collection strategy
with which the tiny and complex signal patterns caused by
the user’s mouth motion can be well captured. Moreover,
a set of algorithms are proposed to extract clear signal
profiles related to mouth motions while mitigating inter-
ference factors like multi-path. Second, we combine both
(coarse-grained) time-domain statistical features and (fine-
grained) frequency-domain wavelet transformation features
as the feature set to perform word recognition, which
well characterizes the signal profile features and achieves
high accuracy. Third, we utilize a transfer-learning-based
approach to reduce training costs when the user switches
between different environments. We implement HearMe
with the commercial Impinj R420 reader and passive tags.
Experimental results demonstrate that HearMe can detect
mouth motions with an average accuracy higher than 0.95.
In a predefined vocabulary containing 20 words, HearMe
achieves an average recognition accuracy higher than 0.88
with a latency of less than 150 ms. The latency of HearMe is
nearly two orders of magnitude less than traditional DTW-
based approaches [11], making it applicable to practical
scenarios that require real-time lip-reading services.

The rest of the paper is organized as follows. In Section 2
related works are reviewed. We design a data collection
strategy that can well capture the tiny signal fluctuation
patterns when the user speaks and describe it in detail in
Section 3. How to preprocess the data to mitigate the impact
of interference is also described in this section. In Section 4
we explain how to segment signal profiles related to mouth
motions, followed by feature extraction and classification
model selection in Section 5. Section 6 describes how to
reduce costs in data collection when the user enters a
new environment. Experimental results are reported and
analyzed in Section 7. Finally, Section 8 gives the concluding
remarks of the paper.

2 RELATED WORK

2.1 Vision-based Approaches

Most lip reading approaches are based on visual analysis.
Saitoh et al. [6] implemented a lip-reading system that can
run on a laptop. The system uses the Viola-Jones algorithm
for face detection, the AAM algorithm for lip detection and
feature extraction [7], and finally uses the DP matching
algorithm to realize mouth motion recognition. It supports
multiple postures of sitting, supine, and handheld camer-
a devices. Real-time interaction is realized by registering
common sentence databases, inputting instructions to be
recognized, and automatic recognition. Kumar et al. [8]
proposed a vision-based lip-reading system and compared
facial movements from a profile and a front view. Zhou et
al. [18] propose a practical lip-reading system by detecting
frames in a video. While achieving fairly high recognition
accuracy, however, vision-based approaches are very sensi-
tive to lighting conditions and cannot be used in dark envi-
ronments, which greatly limits their application scenarios.

2.2 Lip-Reading based on Wireless Signals

WiHear [11] uses the MIMO technology to extract and
receive reflected signals. Due to the negligible Doppler shift
and amplitude fluctuation caused by the small motion of the
speaking actions, WiHear uses beam-forming technology
and wavelet analysis to focus and amplify the characteristics
of oral motion, achieving fine-grained activity recognition
of lip and tongue movements. Zhao et al. [19] demonstrat-
ed a Wi-Fi based approach to accurately estimate human
postures through walls and occlusions. SilentTalk [2] uses
a smartphone to emit ultrasonic signals and capture the
Doppler shift in the reflected signals to recognize different
mouth motions. Recently, lip reading based on acoustic sig-
nals has also been exploited as a new approach to biometric-
based authentication for mobile devices [4], [5]. However,
lip reading based on RFID is not well explored. The work
in [20] leverages customized RFID devices to attach to
the user’s face to recognize the user’s speech, which is
uncomfortable and limits its commercial deployment due
to customized RFID devices.

2.3 RFID-based Activity Recognition

Recently there some works on RFID-based activity recog-
nition, but they usually recognize macro and rigid body
movements such as gestures and cannot be used in lip read-
ing. Femo [21] recognizes the user’s activities during body
exercise and assesses the quality of exercise movements.
ShopMiner [22] and CBid [23] monitor the customers’ be-
haviors by attaching RFID tags to goods in the supermarket
and recognizing different behavior patterns by tracking the
motions of tags. In [24], the authors combine Kinect-based
activity recognition and RFID-based user identification to
improve the quality of augmented reality applications. ID-
Sense [25] enables smart interaction between the user and
objects by developing activity detection systems based on
RFID. Recently, deep learning is also exploited to recognize
A user’s body activities [26], in which the users need to
attach some sensors or RFID tags. Zhang et al. propose a
read-time RFID-based gesture recognition system [17].
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1(a) DA strategy
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1(b) MT strategy
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1(c) WM strategy

Fig. 2. Signals collected with different strategy: (a) the tags are directly attached to the skin; (b) the tags are attached to a soft mask tightly clung to
the skin; (c) the tags are attached to a hard plastic mask and the user wears the mask.
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Fig. 1. Framework of HearMe.

3 DATA COLLECTION AND PREPROCESSING

The framework of HearMe is shown in Fig. 1. HearMe
consists of two parts: a data collection part (the left) and
a data processing part (the right). In this section, we first
elaborate the motivation of using RFID to perform lip-
reading, and then describe the two parts in detail.

3.1 RFID-based Lip-reading: Advantages

Compared with other wireless techniques such as WiFi and
Radar, RFID is more suitable for multiple user scenarios due
to the following reasons. First, by using tag ID, it is easy to
distinguish signals for different users. For example, assume
that there are two users in the monitoring region. For the
first user, we use tags t1, . . . , t4. For the second user, we
use tags t5, . . . , t8. After receiving the signals backscattered
from the tags, we can group signals backscattered from
t1 to t4 as the signal profile for user 1 and the signals
backscattered from t5 to t8 as the signal profile for user 2.
This can be easily done by filtering signals backscattered
from tags according to tag IDs. However, for WiFi-based
approaches or Radar-based approaches, separating signals
for two different users might be difficult because the signals
received at the receiver are a superposition of all the signals
reflected by the two users. Second, RFID has a relatively
large operational region and the operational region could
be further enlarged by using multiple readers/antennas,
which makes it more suitable for multiple users scenarios.
For example, when there are two users, we can attach
different sets of tags to different users and let the user
sit still in their positions. When there are more users, we
can enlarge the operational region by deploying multiple
antennas and letting each antenna cover at most two users.
Because different antennas can communicate with tags at
different channels (there are 16 available channels for com-
mercial RFID devices), the high accuracy of HearMe can be
maintained. We can use RFID to achieve this goal because

the RFID reader handles the signal interference problem
at the hardware and driver level and thus we need not
worry about signal interferences in HearMe. In contrast, al-
though in Wi-Fi-based approaches we can also use multiple
channels (at most 3 channels can exist without interference
among adjacent channels in WiFi standard), all the signals
reflected from different users will mix and it is very difficult
to distinguish signals for a specific user. Third, RFID-based
approaches are less sensitive to small movements of the
user’s head and inter-user interferences when the users are
separated from each other, while WiFi-based approaches
are more sensitive to inter-user interferences and even the
user’s tiny motion. As reported in previous works [11], even
winking can severely impact the signal pattern when Wi-Fi
signals are used to perform lip-reading. As a comparison,
HearMe can tolerate slight head motions when the user
performs speaking actions.

3.2 Data Collection
It is difficult to collect clear signal profiles for lip reading
because of two reasons [2], [11]. First, the mouth motions
caused by the user’s speaking actions are very tiny. Second,
the mouth motions are a complex combination of jaw,
tongue, and other muscles around the mouth and thus
cannot be simply treated as rigid motions as in gesture
recognition [15], [17], [27]. As for RFID, it is more challeng-
ing because the signals might be absorbed by the skin if we
directly attach tags to the user’s body as in previous works
[27].

To collect clear signal profiles for lip reading, we con-
sider three different data collection strategies described as
below.

3.2.1 Direct Attachment (DA) Strategy
We first follow existing works on RFID-based activity recog-
nition and attach an array of tags directly to the skin
around the mouth. However, we find this strategy has
several drawbacks. First, the skin causes significant signal
absorption, making it difficult to collect useful signals when
the distance between the user (tag) and the antenna is larger
than 30 cm. Second, even when the tags are very close to
the antenna, the missing reading problem is serious, which
makes it difficult to collect signals that can characterize the
overall features of mouth motions. Actually, when the tags
are placed on conductive materials such as a human being’s
skin, the reading rate and reading range will both decrease.
As pointed out in [28], [29], the skin will cause severe
signal absorption which consequently results in the missing
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reading problem. For example, Fig. 2(a) plots the phase
readings of four tags with the DA strategy. Serious missing
readings for tag 2 and tag 4 can be observed, especially for
tag 4 whose signals cannot be obtained most of the time.
Even for tag 1 and tag 3 whose signals can be collected, the
missing readings problem is still serious.

3.2.2 Soft Mask Tightly Clung to Mouth (MT) Strategy

To overcome the missing readings problem caused by signal
absorption, we let the user wear a soft mask that is tightly
clung to the mouth. With this strategy, the missing read-
ings problem can be well mitigated, as shown in Fig. 2(b).
However, because the mouth motions are greatly limited by
the tight mask, there are nearly no obvious signal pattern
changes when the user performs speaking actions. It can be
observed from Fig. 2(b) that the signal patterns during the
user’s speaking action and during the silent time are similar.
This makes it difficult to separate signal profiles related to
mouth motions.

3.2.3 Wearable Plastic Mask (WM) Strategy

To overcome the problems in the DA strategy and the
MT strategy, we propose a wearable plastic mask strategy.
Instead of using a soft mask tightly clung to the mouth,
we paste an array of tags to a hard transparent plastic
mask and let the user wear the mask. The advantages of
the WM strategy are as follows. First, because there is a
certain distance between the tags and the mouth, the signal
absorption problem and the missing readings problem can
be well mitigated. Second, because the distance between the
tags and the mouth is very short (only several centimeters),
the signals backscattered by the tags can well capture the
combined movement of muscles during the user’s speak-
ing action. This generates rich patterns for accurate mouth
motion detection. Moreover, the tags’ signals remain stable
when the user is silent, which is helpful for mouth motion
segmentation when the user performs speaking actions.

Fig. 2(c) plots the signal collected with the WM strategy
when the distance between the antenna and the user is 80
cm. Two observations can be made: 1) The missing readings
problem caused by signal absorption is well solved, and 2)
the signal patterns when the user performs speaking actions
are apparently different from the signal patterns in the silent
time. This makes it possible to separate signal segments
related to speaking actions from signal segments related to
the silent time.

3.3 Data Preprocessing

3.3.1 Phase Ambiguity Mitigation

It is well known that phase readings of RFID tags are usually
affected by phase ambiguities and phase wrapping problems
[15], [17]. Phase ambiguity is a phenomenon in which con-
secutive phase readings might differ by π even when the
tag is static, as shown in Fig. 2(c). Phase wrapping means
that the phase value reported by the reader wraps when the
actual phase approaches 0 or 2π. We adopt the techniques
proposed in [30], [31] to mitigate phase ambiguity and
phase wrapping problems. Fig. 3(a) shows the signal after
resolving phase ambiguities.

3.3.2 Out-band Interference Filtering
The frequency of the signals caused by the mouth motion
is around 2-5Hz [11]. To filter out noisy signals that are not
caused by the user’s speaking action, we use a Savitzky-
Golay filter [32] to smooth the signal and filter out-band
interferences. The Savitzky-Golay filter performs data filter-
ing based on local polynomial least squares fitting in the
time domain. It can preserve the shape and tendency of the
signal while filtering out noises.

Consider a set of 2N + 1 data points x[n] centered at
n = 0. We use an J -th order polynomial equation to fit the
data

p(n) =

J∑
j=0

ajn
j, (1)

such that the mean-squared approximation error for the
2N + 1 data points is minimized

εn =

N∑
n=−N

(p(n)− x[n])2. (2)

The polynomial coefficients can be calculated as described
in [32]. We setN = 3 to balance the computation complexity
and the quality of the filtered data. The signals after filtering
are shown in Fig. 3(b). It is apparent that the signals exhibit
clear pattern changes when the user performs speaking
actions. Moreover, the signals are quite stable when the user
is silent.

3.3.3 Multi-path Reflections Removal
Besides the signals reflected by the mouth, the signals
collected at the RFID reader might also contain reflection
signals from other static objects in the environment, e.g.,
walls and furniture. Assume that there are P articulators
causing reflections during the mouth motion, the total re-
ceived signals can be represented as

d(t) =

P∑
p=1

ap(t)sin(2πfpt+ φp) + ϕ, (3)

where fp is the frequency of the reflected signals from the
p-th articulator, ap(t) is the reflection coefficient related to
the distance from the p-th articulator to the receiver, φp
is the corresponding phase, and ϕ denotes the reflections
caused by static objects in the environment. Because static
reflections usually come from a far longer distance than
the distance between the tags and the mouth, we can use
the method proposed in [2] to remove this interference by
setting a threshold on the delay and retain only information
related to mouth motions.

4 MOUTH MOTION SEGMENTATION

4.1 Segmentation Algorithm
It can be observed that the signals are very stable when
the user is silent but exhibit significant fluctuations when
the user performs speaking actions. Based on these obser-
vations, we propose a threshold-based method based on the
Modified Varri Method [33] to segment signal profiles related
to the user’s speaking action. The method uses a sliding
window that combines a frequency measure estimated by the
summation of the differences of consecutive signal samples
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1(a) Removing phase ambiguity

0 15 30 45 60
0

1

2

3

4

5
 Tag 1  Tag 2  Tag 3  Tag 4

P
h

a
se

 r
ea

d
in

g

Time (seconds)

 

 

1(b) Filtering out-band interference
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1(c) Mouth motion segmentation

Fig. 3. Data preprocessing: (a) after mitigating phase ambiguity; (b) after filtering out-band interferences; and (c) after motion segmentation.

and an amplitude measure of the signal values in the relevant
windows to evaluate changes in the signal. Denote by L be
the number of data points in the window and by xi,k the
k-th data point in the i-th window. For the i-th window, the
amplitude measureAi and the estimated frequency measure
Fi are calculated as

A(i) =
L∑
k=1

|xi,k| and F(i) =
L∑
k=1

|xi,k − xi,k−1|, (4)

and the measurement difference function G is defined as

G(i) = CA|A(i+ 1)−A(i)|+ CF|F(i+ 1)−F(i)|, (5)

where CA and CF are two coefficients that change in various
applications. We experimentally set their values in our im-
plementation. The value of G(i) would be small when the
user is silent and would be large when the user performs
speaking actions, and thus we can use a threshold-based
approach to separate the signal profile related to mouth
motions.

The detailed segmentation algorithm is as follows. For
each data point x[n], a bit S[n] is used to indicate whether it
belongs to a mouth motion segment or not: S[n] = 1 means
YES and S[n] = 0 means No. We first initialize S[n] = 1 for
all data points and use a two-step algorithm to find mouth
motion segments:

• Determining resting time: We use a window with
length LS to determine the resting time. For the u-
th data points, we construct a window consisting of
{x[u], . . . , x[u+LS−1]} and calculate G(u) according
to Eq. (5). If G(u) is smaller than a predefined thresh-
old, we set S[n] = 0 for u ≤ n ≤ u + LS − 1. Then
we slide the window by one data point and repeat
the process. All the data points whose S[n] = 1 form
a candidate set of potential mouth motion segments.

• Removing fragmented segments: Some fragmented mo-
tions might be incorrectly identified due to noises.
Noting that a speech action usually takes about a
relative long time (∼ 1second), we remove segments
whose length are too short to be a real speech action.
To do this, for each identified mouth motion segmen-
t, we calculate the time duration of the segment and
remove the segment whose duration is shorter than
a threshold by setting corresponding S[n] = 0.

After we identify the mouth motion segments of all
the U tags, we align their boundaries as follows. For each
identified motion segment Mi, we calculate its left bound-
ary BL(i, u) and right boundary BR(i, u) and set the left
boundary and the right boundary for the segment as

BLi = max{BL(i, u)}, BRi = min{BR(i, u)}, 1 ≤ u ≤ U. (6)
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Fig. 4. Motion segmentation Accuracy.

4.2 Segmentation Accuracy

An example of the segmentation result is shown in Fig. 3(c).
It can be observed that most motions can be correctly seg-
mented. We use the following four metrics to evaluate the
performance of the proposed mouth motion segmentation
algorithm as suggested in [21].

• Insertion rate indicates the proportion of pronunci-
ation activities detected during the resting interval.
It reflects the algorithm’s sensitivity to noise in the
resting interval.

• Deletion rate indicates the percentage of missed pro-
nunciation activities. It reflects the sensitivity of the
algorithm to phase changes caused by different lip
patterns.

• Fragmentation rate indicates the ratio of dividing a
single mouth motion into multiple activities. It eval-
uates the algorithm’s ability to handle complex or
incoherent speech activities.

• Merge rate indicates the ratio of combining multiple
speaking activities into one mouth motion. It evalu-
ates the ability of the algorithm to identify pronunci-
ation activities at relatively high speeds.

Fig. 4(a) plots the four metrics when the user speaks 10
different words. Both fragmentation rate and merge rate
are very low for all the words, with an average value of
0.010 and 0.014 respectively, indicating that the proposed
algorithm can accurately identify the whole segment re-
lated to speaking actions. The deletion rate is very low
(0.005), which means that our approach can detect almost
all speaking actions. The average insertion rate is 0.021,
which means that there is a small probability that a speaking
action is detected when the user is silent, e.g., triggering
a false alarm. Fig. 4(b) plots the segmentation accuracy of
the proposed algorithm when the user speaks 10 different
words. The average segmentation accuracy is 0.95 and the
highest accuracy is 0.992. The results demonstrate that the
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Fig. 5. Comparison of recognition accuracy with/without wavelet fea-
tures.

proposed algorithm can accurately identify the signal seg-
ments related to mouth motions.

5 FEATURE EXTRACTION AND MODEL TRAINING

We use two types of features to comprehensively capture the
characteristics of the signal profiles related to mouth motion:
the time-domain statistical features that capture the coarse-
grained global tendency of the signal and the frequency-
domain wavelet (transformation) coefficient features that
capture the fine-grained local features of the signal profile.
We then feed the features into a machine-learning-based
classifier to recognize what words the user is speaking.

5.1 Statistical Features

The first set of features we use are the statistics of the signal
profiles, which can be divided into three categories:

• The statistics that reflect the central tendency of the
signal profile, including mode, first quartile, median,
the third quartile, and the arithmetic mean.

• The statistics that reflect the dispersion property of
the signal profile, including variance, coefficient of
variation, maximum value, and minimum value.

• The statistics that reflect the global shape of the
signal profile, including skewness and kurtosis.

Fig. 5 plots the recognition accuracy when using only
statistical features on a vocabulary containing 10 different
English words (the detailed word list is given in Section 7).
For nine out of the ten words, the recognition accuracy is
lower than 0.9, and the average accuracy is 0.87. We find that
the statistics can well capture global coarse-grained features
of the signal profile, but they cannot reflect fine-grained
local features of signal profiles related to different speaking
actions. For example, Fig. 6(a) and Fig. 6(c) show the signal
profiles of two words “you” and “go” respectively. While
the shapes of the two profiles are different, their time-
domain statistics are very similar and thus are difficult
to distinguish by using only the aforementioned statistical
features. We need to extract more fine-grained features of
the signal profile to improve the recognition accuracy.

5.2 Wavelet Coefficients Features

To capture the fine-grained local features of the signal pro-
file, we exploit the wavelet transform of the signals and use
the wavelet transform coefficients as additional features.

5.2.1 Wavelet Transform of Signal Profiles
Compared with the statistical features, the wavelet transfor-
mation features provide additional information from two
aspects. First, the wavelet transform captures the features
of the signal profile from both time domain and frequency
domain, while the statistical features consider only time
domain. Second, the wavelet features provide multi-scale
feature of the signal profile, which is helpful to distinguish
between words that have common pronunciation actions
(e.g., “you” and “go”).

We use the discrete wavelet transformation (DWT) [11]
to obtain the wavelet features. The discrete signal x[n] can
be represented by a combination of wavelet basis functions

x[n] =
1√
M

(
∑
k

Wφ[j0, k]φj0,k[n] +

∞∑
j=j0

∑
k

Wψ[j, k]ψj,k[n]),

(7)
where x[n] represents the original discrete signal defined
in [0,M − 1], φj0,k[n] and ψj,k[n] are discrete wavelet basis
functions defined in [0,M−1]. In order to obtain the wavelet
coefficients, we select a set of basis functions φj0,k[n], k ∈
Z and ψj,k[n], (j, k) ∈ Z2, j ≥ j0 that are orthogonal in the
decomposition process, e.g.,

< φj0,k[n], ψj,k[n] >= δj0,jδk,m. (8)

In discrete wavelet decomposition, the signals are itera-
tively decomposed into two parts: the approximate coeffi-
cients and the detailed coefficients. The following equations
are used to calculate the wavelet packet coefficients at each
level:

Wφ[j0, k] =
1√
M

∑
n

f [n]φj0,k[n], (9)

Wψ[j, k] =
1√
M

∑
n

f [n]ψj,k[n], j ≥ j0, (10)

where Wφ[j0, k] and Wψ[j, k] represent the approximation
coefficients and the detailed coefficients, respectively.

5.2.2 Data Alignment
To apply wavelet decomposition to the signal profile, the
data points for each tag should be of the same length.
However, the channel access mechanism used in RFID such
as ALOHA protocol is inherently a time division random
access protocol, and thus the data points for each tag are
usually different. Furthermore, the data are collected at dif-
ferent time, making them not aligned with each other. Thus,
before applying the wavelet transformation on the signal
profile, we should align the data by interpolation. We use a
cubic Hermite polynomial to interpolate the data points [17].
Each speaking action takes about 1 second. Considering that
the tag identification rate is about 400 readings per second,
we interpolate 400 data points for each tag.

After the data are aligned, we apply the wavelet decom-
position to the interpolated data for each tag and obtain a
set of wavelet coefficients. We choose the Daubechies wavelet
bases [34] and evaluate the recognition accuracy with differ-
ent decomposition levels. A RandomForest classifier is used
to evaluate the recognition accuracy. The results are listed
in TABLE 1. It can be observed that the highest recognition
accuracy is achieved when the signals are decomposed at
level 4.
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(a) “Signal profile (‘go’)” (b) “Wavelet coefficients (‘go’)” (c) “Signal profile (‘you’)” (d) “Wavelet coefficients (‘you’)”

Fig. 6. Comparison of wavelet decomposition of “you” and “go” with similar pronunciation.

TABLE 1
Recognition accuracy vs. decomposition levels.

Decomposition level 2 3 4 5 6
Recognition Accuracy 0.879 0.884 0.891 0.869 0.843

TABLE 2
Recognition accuracy with different classifiers

Classifier model Recognition accuracy
RandomForest 0.927
J48 0.803
RandomTree 0.732
DecisionTable 0.606
Logistic 0.850
BayesNet 0.740
LogitBoost 0.811

We combine both the wavelet coefficient features and the
statistic features obtained in Section 5.1 to classify different
speaking actions and plot the results in Fig. 5. It can be
observed for 9 out of the 10 words, the recognition accuracy
is improved when the wavelet coefficient features are used.
The most significant improvement is for the third word, for
which the recognition accuracy is improved by nearly 10
percent. The only word for which the recognition accuracy
decreases is the fifth word, for which the accuracy is slightly
decreased from 0.883 to 0.878. By using the wavelet coef-
ficient features, the average recognition accuracy over all
words is improved from 0.87 to 0.92.

5.3 Classifier Model Selection
We test the recognition accuracy of different classifier mod-
els and list the results in TABLE 2. The RandomForest model
performs significantly better than all the other classifiers,
which is consistent with previous studies on RFID-based
activity recognition. Thus in all the following experiments
we use RandomForest as the default classifier.

6 CROSS ENVIRONMENT RETRAINING BASED ON
TRANSFER LEARNING

One inherent problem of wireless sensing is environment
dependence. When the trained classification model is de-
ployed to a new environment different from the training en-
vironment, its performance usually significantly degrades.
To maintain a high accuracy of the model in the new
environment, the user needs to collect samples in the new
environment and retrain the model. As model training
usually requires a large number of samples to achieve a
high accuracy, collecting data and retraining the model incur
high costs. To reduce the cost of collecting new samples, we

use an approach based on the mapping model and transfer
learning to synthesize samples in the new environment
with the samples collected in the training environment,
similar to [35]. The flowchart is shown in Fig. 7, and it can
be divided into two parts: synthesizing samples with the
mapping model, and transferring the mapping model to a
new environment.

The goal of synthesizing samples with the mapping
model is to generate synthetic data of the new environment
to decrease the collecting costs in the new environment.
Assume that there are enough samples collected in the
training environment and a few samples (e.g., 5 samples of
each class) are available in the new environment. To syn-
thesize samples of the new environment, we need to learn
the mapping relationship between the samples collected in
the training environment and the samples collected in the
new environment. After obtaining the relationship, we can
map the samples in the training environment to the new
environment, which can be used to train a new classification
model in the new environment. Specifically, we first build a
neural network model as the mapping model. Denote by St
the set of samples collected in the training environment and
by Sn the set of samples collected in the new environment.
We first divide St into two subsets S1

t and S2
t , where the

samples in S1
t are used to train the mapping model and the

samples in S2
t are used to generate synthetic samples.

When training the mapping model, for each sample
st ∈ S1

t , we select a sample sn ∈ Sn with the distance
between sn and st being the shortest among all the samples
in Sn as its paring sample. (Note that st and sn should be
in the same class.) We then use all the st as input and all
the sn as output to train the mapping model. In our imple-
mentation, we train a network containing 7 fully-connected
layers as the mapping model. After the mapping model is
built, we feed the samples in S2

t into the model and take the
output of the model as the synthesized samples in the new
environment. These synthetic samples are generated by the
model based on the samples of the training environment,
which do not exist in the real world but contain features of
real world data because of the mapping relationship. With
the method, we only need to collect a few samples in the
new environment to build the mapping model, and then
generate synthetic samples to train the new classification
model, which avoids the collection of a large number of
samples in the new environment and thus decreases the cost
of sample collection in the new environment.

The goal of the second part, transferring the recogni-
tion model to a new environment, is to transfer a trained
recognition model to another new environment by transfer
learning to decrease the number of training samples since
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Fig. 7. Synthesizing samples in a new environment by transferring
samples collected in the training environment.

we do not have to train the network from scratch. Specif-
ically, when a trained recognition model is deployed to a
new environment A, we freeze the parameters of the first
several layers and only fine-tune the parameters of the last
fully connected layer with samples from A, either collected
samples or synthesized samples. The rationale for freezing
the parameters and fine-tuning the last layer lies in transfer
learning. Based on the theory the transfer learning [36],
the shallow layers of the neural network extract general
features, which are the same across similar tasks, while the
deep layers of neural network extract task-specific features
among similar tasks. Hence, we can transfer the trained
shallow layers to a new recognition model to avoid training
the model from scratch.

As shown in Fig. 7, this synthesis process still requires
collecting some samples in the new environment. However,
the number of required samples are much smaller than the
number of samples when all the samples are newly col-
lected, and thus the cost in collecting samples and training
model can be significantly reduced.

7 PERFORMANCE EVALUATION

7.1 Experiment Setup

We implement HearMe with the commercial Impinj R420
Speedway reader and a circularly polarized Laird S9028PCR
antenna. We attach an array of passive tags (Monza AZ-
9629) to a transparent plastic mask and let the user wear
the plastic mask and speak different words (without making
sound). To minimize the impact of mutual coupling between
tags [37], we follow the deployment of tags in the work
[16]. In specific, we deploy the nearby tags perpendicular
to each other such that the interference between tags is low
enough. The reader uses the maximum throughput mode
to continuously interrogate data from the tags, with the tag
reading rate of around 400 readings per second. The default
distance between the antenna and the user is set at 80 cm.
The low level reader protocol (LLRP) [38] is used to transmit
the data from the reader to a laptop for data processing,
which is equipped with a 2.6GHz Intel(R) Core(TM) i5 CPU
and 8GB RAM memory. The data processing software is
implemented in Java.

7.1.1 Vocabulary

We consider an English vocabulary and a Chinese vocabu-
lary, each containing 10 frequently used words.

• English vocabulary [11]: how, are, you, good, like,
go, play, any, watch, dog.

• Chinese vocabulary: 中,爱,是,华,国,吃饭,睡觉,学
习,走路,上课.
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Fig. 9. Impact of vocabulary size: (a) recognition accuracy; (b) Preci-
sion/recall for English words.

7.1.2 Data Collection
We invite 7 volunteers and let each volunteer perform the
speaking actions for about 100 minutes. In each speaking
action, the volunteer randomly select one word in the vocab-
ulary and speaks the word without making sound. There is
a short silence time (1-2 seconds) between two consecutive
speaking actions. The collected data are divided into two
parts: 80% of the data are used as training data to train
a classifier model, 10% of the data are used as validation
data to validate classifier, and the rest 10% data are used
as testing data to evaluate the performance. The default
classifier model is RandomForest.

7.2 Accuracy of HearMe under Different Settings
7.2.1 Impact of Tag Array Deployment
We first investigate how the number of tags and different
deployment strategy of tags affect the recognition accuracy.
Due to the limited space of the mask, we can attach at most
five tags to the mask without causing signal coupling be-
tween tags. The positions of tags are illustrated in Fig. 8(a).
When k tags are used, these tags are pasted to positions
T1, . . . , Tk. For example, when four tags are used, the four
tags are pasted to T1, T2, T3, T4, respectively.

The recognition accuracy with different number of tags
is plotted in Fig. 8(b). It can be observed the recognition
accuracy is low (≤ 0.6) when only one or two tags are used.
The reason is that the mouth motions are complex combi-
nations of different components including jaw, tongue and
other muscles around the mouth, and thus two tags are not
enough to capture the comprehensive signal changes of such
complex motions. The recognition accuracy is improved to
a high level (0.919 for English words and 0.923 for Chinese
words) when four tags are used. However, using more than
four tags does not further improve the recognition accuracy.
Moreover, more tags would cause more signal collisions and
decrease the quality of the obtained signal profiles. Thus, in
the following experiments, we use the four tag deployment
strategy in default.
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TABLE 3
Accuracy when #word in [11, 20].

#Word 11 12 13 14 15 16 17 18 19 20
Accuracy .925 .923 .920 .919 .909 .907 .898 .897 .887 .881
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Fig. 10. The recognition accuracy vs. number of training samples of each
word.

7.2.2 Impact of Vocabulary Size

We investigate the recognition accuracy with different num-
ber of words in the vocabulary and plot the results in
Fig. 9(a). For both English and Chinese, the average recogni-
tion is higher than 0.95 when there are less than 7 words in
the vocabulary. The recognition accuracy gradually decreas-
es when the vocabulary length increases, but remains higher
than 0.92 even when the vocabulary contains as much as 10
words.

Fig. 9(b) plots the precision and recall for each word
in the English vocabulary. There are 7 words for which
the precision is higher than 0.90 and there is only 1 word
for which the precision is lower than 0.85. The average
precision is 0.93, showing the high recognition precision of
HearMe. The average recall over the 10 words is as high as
0.92, showing that HearMe can correctly segment speaking
actions and recognize related words. We further merged
the English and the Chinese vocabulary to investigate the
accuracy of HearMe when the number of words exceeds 10.
As shown in TABLE 3, the recognition accuracy remains
higher than 0.88 even when there are 20 words in the
vocabulary.

7.2.3 Impact of Training Sample Numbers

The number of training samples will impact the recognition
accuracy of HearMe. We plot the accuracy of HearMe with
respect to the number of training samples in Fig. 10. It can
be observed that with only 60 training samples for each
word, the classification accuracy for both Chinese words
and English words are close to 0.8. The recognition accuracy
improves when more samples are used for training and
tends stable after the number of samples is larger than 150,
at which point the classification accuracy is 0.93 for Chinese
and 0.92 for English, respectively.

7.2.4 Impact of Distance

The phase readings in RFID system are affected by the
distance between the antenna and tags. To investigate how
the distance impacts the recognition accuracy of HearMe,
we change the distance between the user and the antenna

TABLE 4
Recognition accuracy at different distances.

Distance 40cm 80cm 120cm
Chinese 0.857 0.923 0.838
English 0.830 0.918 0.824

by −λ/4 and λ/4 respectively2. It can be observed that
for both Chinese and English the recognition accuracy de-
creases when the testing distance and training distance are
different, but the differences in all cases are smaller than
0.1, which means HearMe can resist to the deformation
in signal profile caused by distance changes. In detail, the
accuracy decreases for Chinese words is smaller than 0.085
and the accuracy decreases for English words is smaller than
0.092. Such a decrease in accuracy is acceptable and can be
further reduced by considering context of different words.
Moreover, we can further reduce the decrease in accuracy
by building multiple classifier models at different distances
and select the best classifier adaptively.

7.2.5 Resistance to Environmental Interferences
The recognition accuracy of HearMe might be affected by
environmental interferences, such as other moving objects
in the same space. To investigate HearMe’s performance in
noisy environments, we consider three cases. 1) Interference-
free scenario, in which the user performs speaking actions
with the distance between the user and the antenna set at
80cm and there are no moving objects in the environment.
The data collected in this scenario are used to train the
classifier model. 2) Slight interference scenario, in which there
is one volunteer randomly moving around the user but the
volunteer always keeps 3 meters away from the user. The
volunteers can jump or using mobile phones. 3) Serve inter-
ference scenario, in which there are two volunteers randomly
moving around the user who performs the speaking actions.
The volunteers can do the same actions as in the second
scenario, but the distance between the two volunteers and
the user is less than 1 meter.

We use the data collected in the interference-free scenario
to train the classifier and use the data collected in all the
three scenarios as testing data. The recognition accuracy in
different scenarios are given in the Fig. 12. It can be observed
HearMe still performs very well in the slight interference
scenario, with only 1 to 2 percent decrease in recognition
accuracy. However, in the serve interference scenario, the
recognition accuracy for both Chinese words and English
words decreases significantly. The drop in accuracy is 0.22
for Chinese and 0.25 for English. In such cases, we should
develop effective methods to remove interference signals
caused by the moving objects.

7.2.6 Impact of Data Volume
Due to the throughput limitation of RFID systems, when the
number of users increases, the effective number of samples
for each user(tag) will decrease, which will consequently
affect the accuracy of HearMe. For example, when there are
n users in the monitoring region, on average the collected

2. Because λ/4 ≈8cm is a short distance difficult to control, we
actually change the distance to −5λ/4 and 5λ/4 respectively as shown
in TABLE 4.
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Actual
Word

Predicted Word
CW1 CW2CW3CW4 CW5 CW6 CW7 CW8 CW9 CW10

CW1 1.00 0 0 0 0 0 0 0 0 0
CW2 0 1.00 0 0 0 0 0 0 0 0
CW3 0 0.01 0.90 0 0.01 0 0.01 0 0.06 0
CW4 0 0 0 0.94 0.02 0 0.02 0.02 0 0
CW5 0 0 0 0 0.97 0 0 0 0 0.03
CW6 0 0.01 0.02 0 0 0.83 0.06 0.03 0.04 0.01
CW7 0 0 0 0 0.02 0.03 0.89 0 0.02 0.04
CW8 0 0 0 0.08 0 0 0 0.86 0 0.06
CW9 0 0 0.02 0.02 0 0.03 0 0.01 0.92 0
CW10 0 0 0 0 0.02 0 0 0 0 0.98

(a) HearMe (Chinese)

Actual
Word

Predicted Word
EW1 EW2 EW3EW4 EW5 EW6 EW7 EW8 EW9 EW10

EW1 0.92 0.05 0 0 0 0.03 0 0 0 0

EW2 0.03 0.92 0 0 0 0.01 0.02 0.02 0 0

EW3 0 0.01 0.91 0.04 0.01 0 0 0 0.03 0

EW4 0.03 0 0.02 0.88 0.03 0 0.04 0 0 0

EW5 0 0.01 0.04 0.03 0.88 0 0 0 0.03 0.01

EW6 0.03 0 0 0 0.02 0.95 0 0 0 0

EW7 0.01 0 0 0.03 0 0 0.94 0.02 0 0

EW8 0 0 0.02 0 0 0 0 0.98 0 0

EW9 0 0 0 0.01 0.04 0 0 0.01 0.91 0.03

EW10 0 0 0 0.01 0.03 0 0.01 0.03 0 0.92

(b) HearMe (English)

Actual
Word

Predicted Word
CW1 CW2CW3CW4 CW5 CW6 CW7 CW8 CW9 CW10

CW1 0.83 0 0.08 0.08 0 0 0 0 0 0
CW2 0 0.90 0 0 0 0 0 0 0.10 0
CW3 0 0.01 0.80 0 0.10 0 0 0 0 0.10
CW4 0 0 0 0.88 0 0 0 0.12 0 0
CW5 0 0 0 0 1.00 0 0 0 0 0
CW6 0 0.10 0 0 0 0.90 0 0 0 0
CW7 0 0 0 0.17 0 0 0.83 0 0 0
CW8 0 0 0.11 0 0 0 0.89 0 0
CW9 0 0 0 0 0 0.10 0 0 0.90 0
CW10 0 0 0 0 0.09 0 0 0.09 0 0.82

(c) DTW (Chinese)

Actual
Word

Predicted Word
EW1 EW2 EW3EW4 EW5 EW6 EW7 EW8 EW9 EW10

EW1 0.80 0 0 0 0 0 0 0 0.10 0.10
EW2 0 0.92 0 0 0 0.08 0 0 0 0
EW3 0 0 0.90 0 0 0 0 0 0 0.10
EW4 0 0 0 0.78 0 0.22 0 0 0 0
EW5 0.09 0 0 0 0.91 0 0 0 0 0
EW6 0 0 0.10 0 0 0.80 0 0.10 0 0
EW7 0 0 0 0.1 0 0 0.90 0 0 0
EW8 0.12 0 0 0 0 0 0 0.88 0 0
EW9 0 0 0 0 0 0 0 0 1.00 0
EW10 0 0 0 0.08 0 0 0.08 0.08 0 0.75

(d) DTW (English)

Fig. 11. Confusion matrix of HearMe and the DTW based approach: (a) HearMe on Chinese words; (b) HearMe on English words; (c) DTW-based
approach on Chinese words; and (d) DTW-based approach on English words. The average accuracy of HearMe is 0.923 and 0.919 for Chinese
words and English words, respectively. The average accuracy of DTW-based approach is 0.87 and 0.85, respectively.
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Fig. 12. Recognition accuracy vs. interferences.
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Fig. 13. Recognition accuracy vs. user number.
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Fig. 14. Recognition delay of different approach-
es.

data for each tag would drop to 1/n of when there is only
one user. We evaluated the performance of HearMe when
the data rate decreases to mimic a multiple user scenario.
Please note that compared with approaches based on other
wireless techniques such as WiFi, HearMe can easily distin-
guish different signals for different users in a multiple user
scenario by taking advantage of tag ID. In RFID system, each
tag has a unique ID. Thus, by grouping signals according to
tag ID, we can easily separate signal profiles for different
users in RFID-based lip-reading system.

We plot the recognition accuracy of HearMe with d-
ifferent data volume in Fig. 13. The recognition accura-
cy decreases only slightly when the data volume fraction
decreases from 1 to 1/3 (which mimics a three still user
scenario), from 0.923 to 0.853 for Chinese and from 0.919
to 0.862, respectively. However, when there are more than
four users, the recognition accuracy sharply drops to below
0.8 (0.782 for Chinese and 0.792 for English). The reason
is that when there are too many users, the data collected
for each user are very sparse, which makes our mouth
motion segmentation algorithm fail to correctly segment the
signal profile corresponding to the speaking actions. This in
turn decreases the recognition accuracy in word recognition.
More robust motion segmentation algorithms need to be
developed for such cases.

7.2.7 Impact of Different Users

We also investigate the accuracy of HearMe for different
individual users. We collect data for 7 different volunteers
and we test HearMe’s accuracy in a person-specific manner.
The results are shown in Fig. 15. It can be observed that
for the different users, the recognition accuracy varies. For
four volunteers, the accuracy is higher than 0.9, and the
highest accuracy is 0.95. The lowest accuracy is 0.84 (user
4). We speculate that the performance fluctuation might be
caused by the different speaking habits of different users.
For example, some users speak with smaller mouth motions
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Fig. 15. The recognition accuracy of HearMe for 7 different users.

TABLE 5
Recognition accuracy at different angles.

Angle -60◦ 0◦ 60◦

40cm 0.634 0.830 0.793
80cm 0.795 0.918 0.796

and at a faster speed than others, which might lead to low
accuracy for these users.

7.2.8 Impact of Different Angles
We evaluated the performance of HearMe when the user
faces the antenna from different angles and give the results
in TABLE 5. We test HearMe at three different angles: 60◦

from lest, 0◦, and 60◦ from right. It can be observed that
the performance is best when the user is exactly at the
front of the antenna, and the performance slightly degrades
when the user are at other angles. However, the recognition
accuracy is still close to 0.8 even when the angle between
the user and the antenna is as large as 60◦ when the distance
is 80 cm, showing that the operational range of HearMe is
relatively large.

7.3 Impact of Head Movement
We also investigated how slight head movements affect
the performance of HearMe. Three different scenarios are
considered: 1) the normal scenario, in which the user can
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Fig. 16. Accuracy of HearMe when the user moves his/her head to a
different extent during the speaking action.

only slightly shake his head with an angle up to 5 degrees;
2) the minor movement scenario, in which the user can
shake his head up to about 20 degrees; and 3) the major
movement scenario, in which the user can shake his head
up to about 45 degrees. The results are shown in Fig. 16. It
can be observed that when the user only slightly moves
his head during the speaking action (i.e., in the normal
scenario), the accuracy of lip reading recognition is about
0.93. In the minor movement scenario, the accuracy slightly
drops to 0.86. When the user shakes his head violently (i.e.,
in the major movement scenario), the accuracy will drop to
about 0.78. Based on these results, we conclude that HearMe
can be used in scenarios in which the user slightly moves
his head, e.g., in scenarios in which the movement angle is
within 20 degrees. However, we also point out that if the
users move their heads violently when speaking, HearMe
cannot work well and the accuracy drops to lower than 0.8.
The reason is that when the user shakes his head violently,
the RF signals will be significantly changed by the head
movement.

7.4 Comparison with DTW-based Approach

Dynamic time wrapping (DTW) has been used in RFID
systems to classify different gestures [15], [16]. We also
implement a DTW-based approach to recognizing different
speaking motions. For each word we select 10 templates,
and when calculating the distances between a signal seg-
ment and a template we use the multi-dimensional DTW
(MDTW) as in [15]. The confusion matrix on both the
Chinese vocabulary and the English vocabulary for HearMe
and the DTW-based approach are given in Fig. 11. Com-
pared with the DTW-based approach, HearMe improves
recognition accuracy by 5 percent for Chinese words and
by 7 percent for English words.

The recognition delay for each speaking action is plotted
in Fig. 14. The recognition delay includes all the time needed
to process the data, but does not include the time spent in
collecting data from tags, which is limited by the throughput
of the RFID system and on the order of several seconds. The
average recognition delay for HearMe is less than 150 ms. In
contrast, DTW-based approaches are much slower because
they need to find the optimal match in a large number of
templates [15], [17]. The average recognition delay for DTW-
based approaches is longer than 20 seconds, which is two
orders of magnitude higher than HearMe.
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Fig. 17. Accuracy in new environment with synthesized samples.

7.5 Cross-Environment Training Performance

Fig. 17 plots the recognition accuracy when cross-
environment synthesized samples are used. We first train
the classification model in environment A. When the model
is directly applied to a new environment B, the recognition
accuracy is lower than 0.4 for both Chinese and English.
When we use new samples collected in B (about 200 sam-
ples each word) to train a new model, the accuracy for
Chinese and English are 0.88 and 0.86, respectively. We then
use a part of the new samples to learn the relationship
between the samples collected from the two environments
and transfer samples collected in environment A to envi-
ronment B with the learned relationship. Fig. 17 shows the
accuracy with different number of new samples. It can be
observed that with about 25% new samples (50 samples each
word), the classifier trained with the synthesized samples
performs nearly the same as using all the new samples. This
significantly reduces the sample collection cost by 75%.

8 CONCLUSION

This paper presents the design and implementation of
HearMe, an RFID-based contactless lip reading system that
can work in a long operational range and can simultaneous-
ly track multiple users by leveraging the ability of RFID tags
to uniquely identify an object. HearMe achieves an average
recognition accuracy of higher than 0.93 for a vocabulary
containing 10 words. Moreover, HearMe is very fast, with
a recognition latency less than 150 ms. This means that
HearMe can support real-time communications for those
people having difficulties in speaking. A transfer learn-
ing based approach is also proposed to effectively reduce
sample collection cost when the user switches to a new
environment. HearMe still has much room to be improved.
For instance, it can be enhanced to recognize short sentences
by using the hidden Markov model (HMM) to exploit the
context of the words. Currently, lip-reading systems based
on wireless signals requires the user remain still during the
speaking actions. So another improve direction is to design
new signal processing algorithms to handle the impact of
user mobility on the performance of such systems
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