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Abstract—Performing accurate sensing in diverse environments is a challenging issue in wireless sensing technologies. Existing
solutions usually require collecting a large number of samples to train a classifier for every environment, or further assume similar
sample distribution between different environments such that a model trained in one environment can be transferred to another. In this
paper, we propose RF-Siamese, an RFID-based gesture sensing approach that achieves comparable accuracy to existing solutions but
requires only a few samples in each eivironment. RF-Siamese leverages Siamese networks to distinguish different gestures with only a
small number of samples and is enhanced by several novel designs to achieve high accuracy in diverse environments. First, the
network structure and parameters (e.g., loss function and distance metric) are carefully designed to be suitable for RFID gesture
recognition. Second, a permutation-based dataset generation strategy is proposed to make full use of the collected samples to
enhance the recognition accuracy. Third, a template matching method is proposed to extend the Siamese network to classify multiple
gestures. Extensive experiments on commercial RFID devices demonstrate that RF-Siamese achieves a high accuracy of 0.93 with
only one sample of each gesture when recognizing 18 different gestures, while state-of-the-art approaches based on transfer learning
and meta learning achieve an accuracy of only 0.59 and 0.70, respectively.

Index Terms—Gesture Recognition, RFID, Few-shot Learning, Siamese Network
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1 INTRODUCTION

W IRELESS sensing has emerged as an amazing tech-
nique for various smart applications, e.g., human-

machine interaction (HMI) [1]–[4], activity recognition [5]–
[8], and ubiquitous computing [9]–[11]. Compared with
sensing technology based on Wi-Fi [12] and millimeter wave
[13], wireless sensing systems based on radio frequency
identification (RFID) can track multiple users simultane-
ously [14] with low-cost hardware, making them easy to
deploy and suitable for users to contact with computers
or smartphones without wearing redundant devices. These
wireless sensing applications become prosperous because
they enable users to enjoy a better quality of service without
using tedious hardware.

One challenging issue in current wireless sensing tech-
nologies is how to perform robust and accurate sensing in
different environments. Many wireless gesture recognition
systems have been proposed, however their performance
heavily depends on the environment. For instance, the per-
formance of a model trained in an environment A might sig-
nificantly degrade when the model is deployed in a different
environment B [15]. This is usually ascribed to the com-
plex propagation of wireless signals, especially in indoor
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environments, which makes the received signals diverse in
different environments even when the user performs the
same gesture. Wireless signal propagation is affected by
many factors, including the distance between the user and
the antenna, the orientation of the user, and the obstacles
in the environment. The collected signals used to train the
gesture recognition model are usually the superposition of
signals traversing different paths. Consequently, when a
model trained with data collected from a meeting room
is utilized to classify the samples from a laboratory, the
model performance might degrade. This problem limits
most wireless sensing systems to work well only in the
strict experimental environment, which seriously hinders
the commercial development of wireless sensing systems
and becomes an urgent problem to be solved [16].

Existing solutions to achieve accurate gesture recogni-
tion in diverse environments fall into two types. The first
type of solutions tries to retrain a model for each new
environment [17]–[19]. However, training a new sensing
model from scratch requires collecting a large number of
training data, which is time-consuming and laborious. Re-
cently, some works use deep learning to leverage its ability
in automatically extracting features to achieve high recog-
nition accuracy. However, sensing models based on deep
learning usually require a large number of training samples,
which further increases the burden in collecting samples.
The second type of solutions, which has attracted much
research attention in recent years, employs transfer learning
to fine-tune a model pre-trained in the source environment
to adapt to the target environment with samples from the
latter [15], [20], [21]. Such works are usually based on
deep neural networks, in which the shallow layers extract
common features that can be transferred across different
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environments. Then the weights of deep layers are fine-
tuned by using a few number of samples from the target
environment [22]. However, this type of approaches requires
samples from different environments following similar dis-
tributions. Otherwise, the transfer learning might fail or
even cause negative transfer [23]. Moreover, approaches
based on transfer learning do not necessarily reduce the
number of samples. It has been shown that several dozens
or even hundreds of samples from both the source and the
target environments are needed to achieve high accuracy in
such approaches [15].

In this paper, we ask the following question: Can we
perform accurate gesture recognition in different environ-
ments with only a few samples of each gesture and no
assumptions on the sample distribution? In one word, we
want to devise a gesture sensing system that can achieve
high accuracy in a new environment, given only a few
samples of each gesture collected from the new environment
and no samples from source environment. As our answer,
we propose RF-Siamese, an RFID-based gesture recognition
system that leverages the Siamese network to recognize dif-
ferent gestures with only a few samples of each gesture. The
Siamese network is a promising model in few-shot learning
[24]–[27]. It trains a pair of weight-sharing networks that
can maximize the distance between samples from different
categories and minimize the distance between samples from
the same category, which makes it be able to distinguish
samples from different categories with only a small number
of training samples.

It is not trivial to put RF-Siamese into practice and we
need to address the following challenges. First, the Siamese
network is originally designed for image recognition. How-
ever, the environment dependency problem in RFID sens-
ing is quite different from that in image recognition. It is
necessary to adequately and uniquely modify the Siamese
network in image recognition before it can be applied in
RFID sensing. Second, as the samples of each gesture are
rare, how to make full use of the samples to achieve high
recognition accuracy should be considered. Third, how to
extend the binary classification Siamese network to classify
multiple gestures (18 gestures in this paper) in an effective
manner is also a challenging problem. We make the follow-
ing designs to address these challenges. First, we carefully
devise the network structure and parameters such as loss
function and distance metric to make it suitable for RFID
sensing. Second, we propose a new permutation-based
dataset generation strategy to make full use of collected
samples, avoiding the drawback of the traditional strategy
where some samples are randomly neglected. Third, we
modify the original binary classification Siamese network to
a multiple classification model based on template matching,
enabling it to classify multiple gestures.

We implement RF-Siamese based on commercial RFID
devices and conduct extensive experiments to evaluate its
performance. The results show that RF-Siamese demon-
strates superior performance: it achieves a recognition ac-
curacy of 0.93 with only one sample of each gesture when
recognizing 18 different gestures. As a comparison, the
state-of-the-art approaches based on transfer learning and
meta learning only achieve accuracy of 0.59 and 0.70 in the
same case, respectively. On average, RF-Siamese can reduce

the number of samples by around 70% to achieve the same
accuracy as state-of-the-art solutions.

The rest of this paper is organized as follows. In Section
2, we review related work. Some preliminaries are presented
in Section 3. The detailed design of RF-Siamese is described
in Section 4, including the design of the network structure,
the selection of loss functions and the template-based mul-
tiple gesture recognition. The performance of RF-Siamese is
evaluated and compared with state-of-the-art solutions in
Section 5. Finally, we conclude this paper in Section 7.

2 RELATED WORK

2.1 Gesture Recognition
Gesture recognition plays a significant role in HMI and has
drawn massive attention in research. Early works rely on
sensors integrated in wearable devices to capture gestures’
features. For instance, uWave [28] leverages an accelerome-
ter to collect the acceleration of user’s gestures and classifies
the gestures using template matching with DTW distance.
The work in [29] utilizes the magnetic sensors of smart-
watches to track the user’s postures. Moreover, fine-grained
hand activity recognition has been realized in [30]. These
approaches require the user to wear dedicated devices,
which are inconvenient to use in daily life.

Contactless gesture recognition has been proposed to im-
prove the convenience. Computer-vision-based approaches
[31], [32] use cameras to record the images of user’s gestures,
and classify different gestures with deep neural networks.
Such approaches achieve high accuracy and real-time in
gesture recognition, whereas their performance depends on
illumination in the environment, which limits their com-
mercial deployment. Wireless sensing systems do not suffer
from insufficient light, and can also recognize gestures with-
out wearing redundant devices. Most existing works lever-
age WiFi [33], [34], RFID [3], [35], [36], and millimeter wave
[37], [38] to realize gesture recognition. For instance, the
work in [34] recognizes 8 finger gestures with channel state
information (CSI) and improves its robustness by removing
environmental noise, reaching an accuracy higher than 0.9.
Although these works try to remove the environmental
factors when recognizing different gestures, they all require
a large number of training samples, which is laborious and
time-consuming and hindering the deployment of these
systems in practical environments.

2.2 RFID-based Gesture Recognition
Recent years have witnessed a vigorous interest in lever-
aging RFID to recognize users’ gestures because RFID de-
vices are contactless, convenient, and low-cost. Compared
with computer-vision-based approaches [39], RFID-based
approaches do not suffer from light insufficiency. Moreover,
RFID-based approaches can recognize multiple users at the
same time, which is still a difficult problem for Wi-Fi-based
approaches [14].

GRfid [35] calculates the DTW distance between two
samples and recognizes them using a template matching
method with DTW distance. However, calculating DTW
distance is extremely time-consuming and thus GRfid is not
real-time. To reduce latency and achieve real-time recog-
nition, ReActor [36] combines 13 statistical features (e.g.,
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min, max, mode, etc) and wavelet decomposition coefficients
to achieve accurate gesture recognition. The accuracy of
ReActor is nearly 0.95, and its time cost in the recogni-
tion process is less than 100 ms. An extended version of
ReActor [40] further considers how to remove reflections
from static obstacles to enhance recognition accuracy. With
the rapid development of deep learning, recent works use
deep neural networks to classify gestures without extracting
features manually. In the work [41], the authors calculate
each tag’s probability of the gesture performing above the
tag, transform the probability matrix to an image, and use
the CNN to classify gestures. In the work [42], the authors
propose an ongoing gesture recognition approach using
adversarial learning. They leverage a LSTM network to
classify gestures, and thus can output the results before the
gesture finishes. In [18], the authors develop a multimodal
CNN to aggregate the RSS and phase data to discriminate
different gestures, and propose an adversarial model to
remove domain-specific information. However, these ap-
proaches commonly require a large number of samples to
train the model.

2.3 Accurate Sensing with A Few Samples

Although the aforementioned RFID-based gesture recogni-
tion approaches achieve good performance, most of them
are environment-dependent, which means that a trained
model cannot be deployed to a new environment directly
otherwise its performance degrades sharply. The reason
is that the propagation distances of wireless signals are
various in different environments due to distinct reflection
objects. Recently, some works have been proposed to ad-
dress this problem by using transfer learning [15], [20], [43]–
[45]. These works mainly try to train the new model in a
new environment using the knowledge of models trained
in similar environments. CrossSense [15] proposes a data
roaming model based on ANN to generate synthetic Wi-Fi
data, and leverages transfer learning to transfer the shallow
layers of ANN when deployed to a new environment such
that it can use a few samples to fine-tune the model. In [20],
the authors propose RF-EATS, which utilizes Variational
Autoencoder (VAE) to generate synthetic samples to train
the model. It also leverages transfer learning to transfer
the trained VAE to a new environment. OneFi [45] lever-
ages velocity distribution to generate synthetic gestures’
spectrogram with distinct angles to train the model, and
uses transfer learning to transfer the classification model,
reducing the number of training samples. MetaSense [43]
and RF-net [44] leverage meta-learning, also known as
learn to learn, to decrease the number of training samples.
They separate the source dataset into several tasks, each
representing a distinct environment, and train the model
with a few epochs using tasks to teach the model how
to adapt to a new environment. Hence, they only use a
few samples to fine-tune the model when the model is
deployed to a new environment. The works in [7], [46]
leverage domain adaptation, which originates from trans-
fer learning, to realize cross-environment sensing. Domain
adaptation exploits adversarial learning to learn domain-
invariant features with a number of source samples and
a few target samples. The work in [47] leverages Siamese
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Fig. 1: The phase profiles when a user performs the ’Knock’
and ’Down’ gestures in different environments: (a) ’Knock’
in a meeting room; (b) ’Knock’ in a laboratory; (c) ’Down’ in
a meeting room; (d) ’Down’ in a laboratory. The profiles for
the same gesture are different in different environments.

network based on CNN-LSTM and distribution discrepancy
to solve environment dependency problem. However, it
still needs a number of samples in source environment to
pre-train the model and cannot fix the flaw of traditional
generation strategy. These works still suffer from quantity
and quality of source domain data. They can partly solve the
environment dependency problem, however, they all need
to collect a great number of data from similar environments,
which still causes high time cost.

3 PRELIMINARIES

In this section, we investigate the environment dependency
problem of RFID recognition systems. Moreover, we con-
duct some preliminary experiments to show the perfor-
mance degradation of existing solutions when the envi-
ronment changes and illustrate that approaches based on
transfer learning cannot fully address this problem.

3.1 RFID Communication Model

In RFID communication, the received RF signal at the reader
side can be represented as

S(t) =
N∑
i=1

Ai(t)e
J[ 2πλ ×2di(t)+γ] mod 2π + n(t), (1)

where Ai(t) and di(t) are the attenuation factor and the
propagation distance of the i-th path at time t respectively,
N is the number of reflection paths, n(t) is the Gaussian
noise, λ is the wavelength of RF signals, and γ is the phase
offset caused by inherent characteristics of RFID tags and
antenna.

Equation (1) implies that in different environments with
different reflection objects, even though the user performs
the same gesture, the received signals at RFID reader might
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vary. For example, the distance between the user and the an-
tenna, the antennas’ view angle, and the ambient reflection
objects all result in distinct di(t), and thus the signals might
change. To illustrate this point, we ask a user to perform
two gestures in a meeting room and a laboratory with the
same setting and plot the phase profiles in different cases
in Fig. 1. It can be observed that even though the user
performs the same gesture, the profiles of the received phase
values are significantly different in different environments,
which means phase values collected from two different
environments are out-of-distribution (OOD).

3.2 Environment Dependency

As discussed in Section 3.1, due to the multipath effects,
the received signals might vary greatly even when the user
performs the same gesture in different environments. There-
fore, the performance of a system trained in an environment
will degrade if it is used to classify samples from another
environment. We conduct two experiments to validate the
performance degradation of existing approaches when used
in cross-environment cases.

To this end, we implemented a state-of-the-art RFID
gesture recognition system ReActor [36] and a model called
Tgt [43] which is based on CNN. We evaluated the F1-
score of these approaches in two environments: S1 is an
open meeting room, where the operating distance is 60 cm
and the antenna view angle is 30°, and S2 is a laboratory,
where the operating distance is 30 cm and the antenna view
angle is 0°. We collect 10 samples of each gesture in the two
environments (We considered 18 different gestures in this
paper, as listed in shown in Fig. 11b). Note that each sample
contains m phase series corresponding to m different tags.
For example, a sample is a time-series data in the form
of {p1t(1,1), . . . , p1t(1,k1); . . . ; pmt(m,1), . . . , pmt(m,km);Gl}, where
pit(i,j) is the j-th phase reading of the i-th tag and Gl is the
label of the l-th gesture. Note that for different tags the time
at which the phases are collected are different due to the
randomness in RFID communication.

The cross-environment performance of the two ap-
proaches is plotted in Fig. 2a. In the figure, we denote train-
ing set-test set as a cross-environment scenario. Specifically,
S1-S2 denotes 70% samples from S1 are used as training
set and 30% samples from S2 are used as test set, and S1-
S1 denotes 70% samples from S1 are as training set and
30% samples from S1 are as test set. As shown in Fig. 2a,
the two models’ F1-score are higher than 0.87 when training
and testing with data from the same environment. However,
when the test environment is different from the training
environment, the F1-score drops sharply to below 0.2. This
clearly demonstrates the dependency on the environment of
existing solutions.

Some recent works tried to leverage transfer learning to
retain the high accuracy when the systems are deployed to a
new environment [15], [20]. Based on the theory of transfer
learning [22], for similar tasks such as classifying the same
set of gestures that have distinct data distribution, the
shallow layers of neural network can extract task-general
features that are the same across different tasks. On the
contrary, the deep layers extract task-specific features which
cannot generalize to other tasks. However, the environment
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Fig. 2: The environment dependency problem: (a) the model
performance deteriorates when used in cross-environment
cases, and (b) approaches based on transfer learning cannot
fully address the environment dependency problem.

dependency problem cannot be fully addressed by transfer
learning. First, transfer learning needs a large number of
samples in the source domain to pre-train the models, while
collecting data is laborious and time-consuming. Second, the
source data greatly influence the performance of transfer
learning. If the data distributions of source domain and
target domain are dissimilar, the transferred knowledge
might be harmful to the models [23] and even result in
negative transfer.

We implement the transfer learning method proposed in
[20] to validate this point. We collect 10 samples of each
gesture from 6 different operating distances: 30 cm, 60 cm,
100 cm, 140 cm, 180 cm and 220 cm. Among these datasets,
we define the dataset collected from 30 cm as the target
dataset, and other datasets as source datasets. Next, we use
each source dataset to train an independent model Tgt with
1, 5, and 10 samples of each gesture respectively. For the
target dataset, we randomly select 1 sample of each gesture
as training set, and 9 samples of each gesture as test set.
After training with source data, we freeze the parameters
of convolutional layers, and then use the training set of
the target dataset to fine-tune the fully connected layers.
Finally, we utilize the model to classify the test set of the
target dataset. The results are plotted in Fig. 2b, in which
the red dotted line denotes the F1-score of the model trained
from scratch with one sample from 30 cm, which is 0.42. The
figure shows that as the number of source samples increases,
the F1-score also increases. However, users have to collect
at least 5 samples such that transfer learning achieves an
F1-score higher than 0.42, which is laborious. Moreover, the
F1-score with data from 220 cm is 0.43, which is nearly equal
to 0.42 even when we use 5 samples to pre-train the model
because the data from the two distances are dissimilar and
the model learns negative knowledge from the source data.
These results indicate that if the source data are not similar
to the target data or the source data are not enough, transfer
learning’s performance degrades. Moreover, the transferred
knowledge might be deleterious in the target environment.
How to select source data with better quality remains a
problem in transfer-learning-based systems. These results
motivate us to devise an accurate sensing system that can
achieve high accuracy with only few samples in the new
environment while avoiding negative transferring effects
from the source data.
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Fig. 3: The distance between the same gestures is shorter
than that between different gestures: (a) The signals of
’Knock’, ’Down’, and ’Right’. Each gesture has two samples.
(b) Intra-class distance and inter-class distance of each kind
of gesture.

4 DETAILED DESIGN OF RF-SIAMESE

4.1 Overview of RF-Siamese

We leverage the Siamese network to realize RF-Siamese. The
Siamese network calculates the Euclidean distance between
two inputs’ features and discriminates them by the distance.
The intuition is that samples of the same class from the
same environment follow a similar data distribution. Hence,
the distance between two samples from the same class is
shorter than that from different classes. As shown in Fig. 3a,
we plot two samples of three different gestures, namely
Knock, Down and Right. The signals of the same gesture are
more similar than that of different gestures. Furthermore,
in Fig. 3b, we plot the intra-class distance and the inter-
class distance of each gesture. The intra-class distance means
the average distance among all the samples belonging to
the same gesture, while the inter-class distance means the
average distance among samples in one gesture and all other
samples1. It can be clearly observed that for each kind of
gesture, the inter-class distances of all gestures are larger
than the intra-class distance. In spite of this, when training
samples are limited, it is hard for the traditional classifier to
learn a clear decision boundary to classify samples.

Fig. 4 shows the framework of RF-Siamese. First, RF-
Siamese preprocesses the raw phase values to smooth the
data, mitigate environmental noises, segment the active
signals, and then transforms the processed phase values to
spectrograms via short-time fourier transform. After prepro-
cessing, a dataset generation strategy is designed to generate
input to the Siamese network which can make full use of
the samples. RF-Siamese then trains the Siamese network
with the generated dataset, in which we carefully select the
loss functions and distance metrics that are most suitable

1. The equations to calculate intra-calss distance and inter-class dis-
tance are given in Eq. (8) and Eq. (9), respectively.

for RFID gesture recognition. Finally, RF-Siamese constructs
a test dataset with all training samples and test samples,
inputs the test data to the trained Siamese network, and
classifies the samples by template matching.

4.2 Signal Preprocessing

4.2.1 Filtering and Smoothing

The raw phase values contain noises caused by ambient
reflection objects. We leverage the Savitzky-Golay filter to
filter out these noises and smooth the phase values as in
the existing work. Savitzky-Golay filter is based on the
method of polynomial least square, and has been exten-
sively utilized in signals denoising and smoothing since
it can preserve the signals’ original shape and width after
filtering [35], [36].

4.2.2 Signal Normalization

To mitigate the influence of absolute values, we leverage the
Min-Max normalization method to map the phase values to
the range of [0, 1]. Min-Max normalization can magnify the
signals’ fluctuation caused by gestures and rid of the effect
of absolute values. For a given tag T , we denote its phase
values φT by {φ1, . . . , φn}, where n is the length of φT . Take
the i-th phase φi (1 ≤ i ≤ n) as an example, the normalized
value is calculated as

φ̃i =
φi − φmin

φmax − φmin
, (2)

where φmax, and φmin are maximum and minimum of φT ,
respectively.

4.2.3 Interpolation and Segmentation

Due to collision, the lengths of phase series collected from
different tags might vary. In our experimental setting, the
sample rate of the reader in the MaxThroughput mode is
around 86Hz. Hence, we leverage linear interpolation to
interpolate the phase series with a 86Hz sample rate. Fur-
thermore, to segment the activate signal, i.e., the signal
when user is performing the gestures, we leverage the
Modified Varri method used in [35]. The method calculates
two values Am =

∑N
n=1 |xk| and Fm =

∑N
n=1 |xk − xk−1|

within a sliding window, where N is the length of the
window and xk is the k-th phase value. By sliding the
window, we segment the active signal with the largest G,
which is denoted as

G(m) = CA|Am+1 −Am|+ CF |Fm+1 −Fm|, (3)

where m is the m-th window. Empirically, we set CA and CF
to 1. The length of window is set to 90 since it takes about
1 second to finish a gesture and the reader collects about 90
phase values per second.

4.2.4 Short-time Fourier Transform

To extract features of time domain and frequency domain,
we utilize short-time fourier transform to transform the time
series data to time-frequency spectrograms based on

STFT (t, f) =

∫ ∞
−∞

x(τ)h(τ − t)e−j2πfτdτ, (4)
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where x(τ) denotes the phase values, h(τ−t) is the window
function. In RF-Siamese, we utilize a Hamming window
whose length Lwindow is 48, and the length to overlap
between segments is Lwindow − 1. The length of FFT is 48.
Fig. 5 shows two spectrograms of Knock and Push respec-
tively. To fully use characteristics of tags’ spectrograms, RF-
Siamese concatenates the spectrograms along the horizontal
direction as input to the Siamese network.

4.3 Structure of the Siamese Network
In RF-Siamese, we utilize the Siamese network to cal-
culate the Euclidean distance between two samples’ fea-
tures. Siamese network has been extensively used to detect
whether two samples are in the same class or not in various
fields [24]–[27]. As shown in Fig. 6, the Siamese network
takes two samples as input simultaneously, extracts features
from the samples, computes the Euclidean distance between
the features, and updates the shared parameters with the
contrastive loss function.

The Siamese network consists of two neural networks
that share the parameters. For each network, it processes
one input and maps the input to the feature space. If the
networks do not share the parameters, they might map
the samples from the same gesture to a different feature
space due to the difference of models’ initial parameters.
By sharing the network’s parameters, the two networks can
extract similar features. The order of two samples does not
matter (i.e., Siamese network’s output of input (X1, X2) is
the same as input (X2, X1). The backbone network extracts
local features in both time domain and frequency domain
from the spectrograms and uses fully connected layers to
flatten the features. We discuss the concrete backbones in
Section 5.3. Then the Siamese network computes the Eu-
clidean distance of the features, which is regarded as the
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Fig. 5: (a) Spectrogram of Knock. (b) Spectrogram of Push.
The spectrograms vary in both time domain and frequency
domain.
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Fig. 6: Structure of the Siamese network used in RF-Siamese,
whose backbone is a 6 layers ResNet.

similarity between two inputs. Theoretically, the distance
should be smaller if the inputs are from the same gesture
and becomes larger if the inputs are from different gestures.
In this way, the Siamese network can discriminate samples
with high accuracy even though when there are only a few
samples of each gesture available.

4.4 Dataset Generation Strategy

Because only a few training samples are available for each
gesture, how to efficiently use the samples to generate
a training dataset is one challenging problem. Traditional
Siamese network randomly chooses two samples from the
training samples and combines them into a pair denoted
as (Y,X1, X2), where X1 and X2 are the samples and Y
denotes whether X1 and X2 are from the same class. We
give an example of traditional strategy in the left side of
Fig. 7. Suppose that there are 4 samples. For each sample, the
strategy first decides whether to choose the same gesture or
different gestures with equal probability, and then randomly
selects a gesture from the same or different gestures to pair
with it. In this intuitive strategy, however, some training
samples might not be chosen because samples are selected
randomly and each sample is selected only once, resulting
in performance degradation when classifying samples of
classes that are not selected.

To address this problem, we propose a new dataset
generation strategy. As shown in the right side of Fig. 7,
we utilize the full permutation to derive the dataset. For a
sample in the training sample set, we pair it with all the
samples in the training set once, including itself. Note that
since the order of the samples in the pair does not matter,
we skip the same pair. For instance, we only select either the
pair of (A,B) or the pair of (B,A). The full permutation-
based strategy avoids the drawback in the traditional strat-
egy (i.e., some samples are ignored) and guarantees all the
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samples are used efficiently. The full permutation might
slightly increase cost in preparing the training set. However,
because only a few samples are available, e.g., one or two
samples of each gesture, the size of the generated dataset is
acceptable. We present the time delay in TABLE 1, in which
the time delay of generating the dataset denotes the time
spent in generating all pairs and the time delay of each
epoch spans from the time when the data loader loads the
first batch to the time when the data loader loads the last
batch of data. With one sample for each gesture, the time
delay of the dataset generation process is 0.04 second and
each epoch lasts 0.11 second on average. Even with five
samples of each gesture, the time delay is 0.93 second and
1.10 second respectively. Since we train the network for 50
epochs, the total time is about 5 second with one sample
of each gesture and less than 1 minute with 5 samples of
each gesture, which is acceptable. Fig. 8 plots the F1-score
with traditional strategy and the full permutation-based
strategy. In all cases, the performance improves when the
proposed full permutation-based strategy is used. The F1-
score is improved by 3 percent when only one sample is
used.

TABLE 1: The average time cost of each epoch during the
training process with different training samples.

Delay(s)
Shot 1 2 3 4 5

DataSet Generation 0.04 0.15 0.34 0.59 0.93
Epoch 0.11 0.23 0.44 0.73 1.10
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Fig. 9: (a) Accuracy of RF-Siamese with different loss func-
tions. (b) Accuracy of RF-Siamese with different distance
metrics in template matching.

4.5 Contrastive Loss Function

As we mentioned in Section 4.1, the key of RF-Siamese is
to drive the distance of samples from the same gesture to
be smaller than that from different gestures. However, most
prevalent loss functions in regression problem (e.g., L1 loss
and MSE loss) do not satisfy this requirement. Therefore,
we leverage the contrastive loss function in RF-Siamese,
which is defined as

L(W ) =
N∑
n=1

L(W, (Yn, Sn))

=
1

2

N∑
n=1

(1− Yn)(D(W,Sn))
2 + Yn[max(0,m−D(W,Sn))]

2,

(5)
where W is the parameters of the Siamese network, N is the
number of input pairs, Sn = (X1

n, X
2
n) is the n-th input pair

consisting of two inputs X1
n and X2

n, Yn denotes whether
X1
n and X2

n belong to the same gesture (i.e., Yn = 0 if
X1
n and X2

n belong to the same gesture and Yn = 1 if
not), D(W,Sn) represents the Euclidean distance of features
of two inputs, and m is the margin of contrastive loss,
restricting the loss to be smaller than m.

RF-Siamese attempts to find out the network’s param-
eters W to minimize the contrastive loss with the Adam
optimizer [48]

W = argmin
W

N∑
n=1

L(W, (Yn, Sn)). (6)

The contrastive loss function is divided into two parts
by Yn. If Yn = 0 (i.e., two samples belong to the same
gesture), the loss function is (D(W,Sn))

2. If (D(W,Sn))
2 is

large, it means the network is not suitable, so W is updated
to make (D(W,Sn))

2 smaller. If Yn = 1, the function is
[max(0,m−D(W,Sn))]

2. Hence, if D(W,Sn) is small, it
deviates from the principle that the distance of samples
from different gestures is large, so the loss increases. After
training with contrastive loss, the features’ distance of the
same gesture will be much smaller than that of different
gestures. Therefore, RF-Siamese can differentiate samples by
the distance.

We compare the accuracy of contrastive loss with L1

loss, MSE loss, advanced pairwise loss [47], and triplet
loss [49] and plot the result in Fig. 9a. It can be observed
that the accuracy of these loss functions is close with one
sample for each gesture. When the number of samples
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Fig. 10: Confusion matrix of RF-Siamese with one sample.

increases, the accuracy of advanced pairwise loss, triplet loss
and contrastive loss keeps increasing while others decrease.
The reason is that these 3 loss functions can drive the gap
between the same gesture and different gestures larger, and
thus informative features can be extracted to recognize the
gestures. However, other loss functions do not satisfy this
bias. Therefore, even though the number of samples in-
creases, the distances between the same gesture and distinct
gestures are still too close to classify the sample, causing a
drop in accuracy .

Compared with contrastive loss, advanced pairwise loss
need to balance the importance of 2 hyperparameters,
named m and b, causing excessive training cost. Moreover,
the accuracy of triplet loss and contrastive loss is close, but
we select contrastive loss as the loss function in RF-Siamese
due to two reasons. First, thanks to the full-permutation
strategy, the contrastive loss can push all different sam-
ples away, which fixes the flaw of contrastive loss with
traditional generation strategy. Therefore, with the full-
permutation strategy, the performance of contrastive loss
can reach as high as the performance of triplet loss. Second,
the number of data pairs generated by the full-permutation
strategy in contrastive loss is less than that in triplet loss
since a triplet contains an anchor, a positive sample, and a
negative sample. Thus the training overhead of triplet loss
is higher than that of contrastive loss.

4.6 Multiple Gesture Classification

The traditional Siamese network is a binary classification
model. By computing the distance between features of two
inputs, it discriminates whether these two inputs belong to
the same class or not. Hence, it cannot be directly applied
to classify multiple gestures. In RF-Siamese, we modify
the Siamese network to a multi-classification model based
on template matching. In specific, after model training, all
training samples are selected as templates. For a test sample,
it pairs with all templates. These pairs are fed into the
trained Siamese network, and the Siamese network will
output the corresponding distance of each pair. Then we
select the class with the minimum average distance as the
target class of the test sample. Fig. 4 shows an example in
template matching and classification part. Assume that there
is a test sample of Up and 3 templates of Up, Left-right,

and Circle clockwise. The test sample first matches with the
templates, and thus 3 input pairs are generated. The pairs
are input to the trained Siamese network and the network
outputs distance of each pair. Then we accumulate the dis-
tance for each gesture of templates. Finally, the average ac-
cumulated distance of Up is the shortest, and thus Up is the
target gesture. The time complexity of template matching
is O(N), where N is the number of templates. Compared
with traditional template matching [35], this method can
bind the network parameters to the distance. Concretely,
the distances between templates and test samples are not
computed on original data directly, but on the features
extracted by the network, where the Siamese network has
reshaped the distance via loss.

To determine which type of distance metric is the most
suitable, we investigate three commonly used distance met-
rics and plot corresponding F1-score in Fig. 9b, namely L1
distance, Euclidean distance, and dynamic time wrapping
(DTW) distance [35], [50], respectively. The figure shows that
the F1-score of these 3 matching distances are close. How-
ever, the time complexity in computing DTW distance is
much higher than the other two distances, and thus it costs
several seconds to classify a test sample in our experiment,
which is not feasible for real-time application [36]. Hence,
we decide to accumulate the Euclidean distance of the pairs
to corresponding gestures of training samples, and finally
classify the test sample as the class with the minimum aver-
age Euclidean distance. Note that using Manhattan distance
is also adequate in RF-Siamese. The confusion matrix of
RF-Siamese with one sample of each gesture is shown in
Fig. 10. All the gestures’ accuracy is higher than 0.83 except
the gesture “Up”. The accuracy of some gestures such as
circle anticlockwise and enlarge, can reach an accuracy as high
as 1. The average accuracy of all gestures is 0.93.

5 PERFORMANCE EVALUATION

5.1 Experiments Setup and Dataset Collection

Implementation: The hardware of RF-Siamese is shown in
Fig. 11a. It consists of a Lenovo Laptop, an Impinj Speedway
R420 reader, and a circularly polarized Laird S9028PCL
antenna. We attach four Monza AZ-9654 RFID passive tags
at the corners of a transparent cover of a plastic box, whose
size is 53cm*39cm*32cm, and fix the antenna at the bottom
of the box such that the antenna and the tags are in line-
of-sight. Empirically, it takes about 1 second to complete
a gesture, so we collect phase values for 3 seconds with
20dBm antenna power in the MaxThroughput mode. We use
Octance Sdk 3.4.0.0 to collect phase values and implement
RF-Siamese using the PyTorch 1.2.0 framework. The model
is trained in a server equipped with 4 NVIDIA TITAN V
GPUs and 256 GB memory with Intel(R) Xeon(R) Silver 4114
2.20GHz processors.
Metrics: We use accuracy and macro F1-score to evaluate
the performance of RF-Siamese, which can be formulated as

F1 =
1

K

K∑
k=1

2× Pk ×Rk
Pk +Rk

, (7)

where K is the number of gesture classes, Pk and Rk is the
precision and recall of the k-th class respectively.
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Fig. 11: (a) RF-Siamese’s hardware. (b) 18 gestures. (c) Layout of the laboratory. (d) Layout of the meeting room.
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Fig. 12: F1-score with different parameters of Siamese net-
work: (a) F1-score vs. length of feature space. (b) F1-score
vs. different margin value (m).

For the p-th gesture Gp, we define inter-class distance and
intra-class distance of Gp as

dinter(p) =
1

K − 1

∑
q 6=p

[
1

NpNq

∑
Xi∈Sp,Xj∈Sq

||f(Xi)−f(Xj)||22],

(8)
and

dintra(p) =
1

N2
p

∑
Xi,Xj∈Sp

||f(Xi)− f(Xj)||22, (9)

where Sp is the set of samples corresponding to Gp, Np
is the number of samples in Sp, and || · ||22 denotes the
Euclidean distance between the features of two samples Xi

and Xj after processing by the Siamese network. We also
leverage the ratio dintra(p) of to dinter(p) to illustrate the
performance of RF-Siamese, which is denoted as

Ratio(p) =
dintra(p)

dinter(p)
. (10)

The smaller Ratio(p), the higher capability of the approach
in classifying different gestures with small number of sam-
ples. All the results reported here are averaged over 100
independent runs.

Parameters setup: We set the kernel size of CNN to 3
with stride 1. As for the length of features, some information
might be lost if the length is too short, while it costs more
computational cost if the length becomes longer. As shown
in Fig. 12a, as the length of feature space increases, RF-
Siamese’s F1-score also increases. We set the length to 512
since the longer length of feature causes more training
overhead while the increase in F1-score is marginal. The
margin m in Eq. 5 is set to 0.1 as the F1-score of RF-
Siamese diminishes when m ≥ 1 as shown in Fig. 12b. In
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Fig. 13: F1-score of RF-Siamese vs number of epochs.

RF-Siamese, we set the training epoch to 50 as it converges
to the best performance as shown in Fig. 13. The batch size
and learning rate are set to 128 and 0.001, respectively.

Dataset: The 18 gestures to be classified are shown in
Fig. 11b. Ten users are invited to participate in our experi-
ments, and their ages range from 22 to 28. Participants are
required to perform 18 gestures 10 times repeatedly in 4
operational distances, 5 antenna view angles, and 2 distinct
environments. We perform the experiments in two different
rooms, one laboratory and one meeting room, the layout of
which are shown in Fig. 11. The participants perform the
gestures based on their own interpretation without guide-
lines. For each environment, we randomly select s samples
of each gesture as training set, where s ranges from 1 to
5. When s samples are used, the corresponding results are
denoted as s-shot learning. After selecting the training set,
the remaining samples of each gesture are used as test set.

5.2 Baselines
We compare RF-Siamese with 7 state-of-the-art solutions,
which are Tgt [43], ReActor [36], Prototypical Network (PN)
[51], Matching Networks (MN) [52], Transfer Learning (TL)
[21], MetaSense [43], and RF-Net [44].

Tgt: Tgt is a 4 layers ResNet-like network with 1 basic
block, and the kernel size is 3.

ReActor: ReActor extracts 13 statistical features (e.g.,
min, max, mode, etc) and wavelet decomposition coefficients
manually as the features, and leverages random forest to
classify the gestures.

TL: TL is a transfer-learning-based method [21], and the
backbone is Tgt. After training with source samples, the
CNN is frozen and the fully connected layers are finetuned
with target samples.

PN: Prototypical network generates prototypes of each
gesture in an embedding space and calculates the Euclidean
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Fig. 14: Accuracy of RF-Siamese with different backbones
and network depths.

distance between the test samples and prototypes, and then
classifies the samples to the closest gesture of prototypes.

MN: Matching networks embed the input, including
training samples and test samples, to a high-dimensional
feature space via attention mechanism modules, and calcu-
lating the Cosine distances between features of training and
test samples.

MetaSense: MetaSense is a meta-learning-based method.
It leverages MAML [53] as its meta-learning scheme. By
splitting source environments’ dataset into sub-tasks and
combing the sub-tasks as a new environment, MetaSense
enables model to learn how to adapt to a new environments
with several samples of each activity.

RF-Net: RF-Net is a meta-learning-based method. It
adopts a metric-based meta-learning framework, including
a dual-path network to extract features from time domain
and frequency domain.

5.3 Performance of Different Backbones

To evaluate the performance of different RF-Siamese’s back-
bones, we leverage 3 typical network models as the back-
bone, namely CNN-LSTM, ResNet [54], and DenseNet [55].
We test the performance of CNN-LSTM with two different
types of input, namely phase series and spectrograms. For
phase series, we use one-dimensional CNN to extract the
features. The experiment is 1-shot learning, which means
for each environment we choose one sample of each gesture
randomly to train the model. The results are shown in
Fig. 14. It can be observed that as the depth increases, the
performances of backbones increase and then drop. When
the backbone is a 6 layers ResNet, the accuracy is 0.94,
which is the highest. The reason is that in few-shot learning,
the training samples are rare. Even though we use dataset
generation strategy to create more inputs, the network still
easily gets overfitted. Consequently, it is not a good choice
to construct a deep backbone in few-shot learning. Further-
more, we observe the accuracies of ResNet and DenseNet
are close, which are both higher than the accuracy of CNN-
LSTM. We consider ResNet and DenseNet both can fully
use the previous information of inputs, e.g., ResNet directly
inputs the input to deeper layers, and DenseNet reuses fea-
tures extracted by previous layers, and thus can extract more
informative features to reach a higher accuracy. It can be
observed that the accuracy of CNN-LSTM is the lowest. The
reason is two-fold. First, phase series only reveals features
of time domain and lacks features of frequency domain,
resulting in low accuracy. Second, using a LSTM layer to
extract features from spectrograms directly might obtain
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Fig. 15: Accuracy of GRfid [35] and RF-Siamese.

irrelevant features and cause a relatively low accuracy since
LSTM is more effective in time series prediction.

5.4 Performance of Short-time Fourier Transform
To validate the effectiveness of short-time fourier transform,
we compare the performance of RF-Siamese when inputting
phase series and spectrograms collected at 60cm respec-
tively. The backbone remains unchanged and we use one-
dimensional convolutional neural networks, whose kernel
size is 5, to extract features from phase series. As shown in
TABLE 2, the performance of using spectrograms is higher
than that of using phase values. Specifically, the F1-score
increases at least by 0.025 with 1 training sample of each
gesture while at most by 0.067 with 5 training samples of
each gesture. Since spectrograms can provide more fine-
grained features in frequency domain without losing too
much information in time domain, the Siamese network can
extract more features to classify the samples. The results
indicate the effectiveness and necessity of short-time fourier
transform.

5.5 Performance of Contrastive Loss
To further figure out the effectiveness of contrastive loss,
we calculate the ratio of raw data and features extracted
by Siamese network based on Eq.10. We plot the ratio of
raw data and ratio of features of 18 classified gestures in
TABLE 3. It is noted that features’ ratios of all gestures are
smaller than that of raw data, which means the intra-class
distance decreases and the inter-class distance increases via
contrastive loss. Specifically, the average ratio of features is
0.329 while the ratio of raw data is 0.484, which means RF-
Siamese decreases the ratio by 0.155. We also compare RF-
Siamese with a straightforward template matching method
GRfid [35], and explore the performance of RF-Siamese if we
remove the Siamese network. As shown in Fig. 15, GRfid’s
accuracy is 0.7 with one sample of each gesture, which is 0.2
lower than that of RF-Siamese. This is because the template

TABLE 2: Accuracy with phase values and spectrograms
respectively at 60cm.

Input Number of Sample
1 2 3 4 5

Phase Values 0.776 0.818 0.849 0.872 0.884
Spectrograms 0.801 0.880 0.907 0.931 0.951
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TABLE 3: Ratio of raw data and ratio of extracted features.

Knock Up Down Left Right Zoom in Zoom out Push Pull
Ratio of raw data 0.570 0.579 0.407 0.471 0.478 0.391 0.493 0.507 0.425
Ratio of features 0.313 0.312 0.246 0.408 0.373 0.256 0.371 0.404 0.332

CC CA Left-right Right-left Up-down Down-up Knock twice Enlarge Shrink
Ratio of raw data 0.543 0.317 0.527 0.449 0.438 0.574 0.602 0.451 0.493
Ratio of features 0.318 0.233 0.423 0.311 0.283 0.345 0.298 0.358 0.335

matching of RF-Siamese is correlated with the network
and contrastive loss. The distance between test samples
and templates is not computed on original data directly,
but on features extracted by the network, which means if
test sample and template belong to the same gesture, their
feature’s distance is closer than that of original data, and
vice versa. Furthermore, if we remove the Siamese network,
RF-Siamese deteriorates into traditional template matching
method since the features’ distance between samples will
not be optimized by the Siamese network. Due to the ran-
dom selection of templates, the performance of RF-Siamese
without network degrades to 0.6 with one sample of each
gesture, and increases marginally as the number of samples
increases.

These results indicate that the Siamese network with
contrastive loss can effectively gather samples of the same
class while pushing samples of different classes away, and
this is the biggest difference between RF-Siamese and tra-
ditional template matching method GRfid, where distances
between templates and test samples are not optimized by
the network. This enables RF-Siamese can extract more
distinct and informative features, and thus RF-Siamese can
recognize gestures with even one sample of each ges-
ture. Therefore, RF-Siamese cannot work well without the
Siamese network.

5.6 Impact of Tag-Antenna Deployments
We evaluate RF-Siamese from the perspective of distinct tag-
antenna deployments. Specifically, we vary the distances
between tags and antenna from 60 cm to 150 cm. The results
are reported in Fig. 16. RF-Siamese’s average accuracy is
0.84, which is the highest among baselines with one sample
of each gesture. Specifically, with one training sample of
each gesture, the average accuracy of traditional sensing
methods, i.e., Tgt and ReActor, is around 0.38, the accuracies
of TL, PN and MN are 0.52, 0.54, and 0.51, respectively.
Compared with MetaSense and RF-Net, RF-Siamese lifts
the accuracy by 0.21 and 0.18. Note that performance of
approaches degrades because of power attenuation. The
results show that RF-Siamese can achieve a high accuracy
under different tag-antenna deployments circumstances.

5.7 Performance at Different Operational Distances
We test the performance of the baselines and RF-Siamese
at 4 different operational distances: 30 cm, 60 cm, 100 cm,
and 140 cm. The distance is the distance between the user’s
hand and the cover of the plastic box. The results are shown
in Fig. 17. It can be observed that the F1-score decreases
as the distance increases due to power attenuation. RF-
Siamese outperforms all baselines in all cases. With one
sample of each gesture at 30cm, RF-Siamese’s F1-score is

0.93, while the F1-score of Tgt and ReActor are 0.44 and
0.36 respectively. This is because Tgt and ReActor have to
learn sufficient knowledge from a large number of training
data, and thus it is difficult for them to achieve a high F1-
score from one training sample of each gesture. Compared
with TL, PN and MN, whose F1-score are 0.54, 0.58 and 0.62
with one sample of each gesture, RF-Siamese improves the
F1-score by around 0.3. The F1-score of MetaSense and RF-
Net are about 0.7, which are lower than RF-Siamese by 0.2
since the performance of meta-learning is highly correlated
with source data. Moreover, we figure out that the error
bars of Tgt and PN are relatively high, which means these
methods suffer from vibration of recognition performance.
We consider when training samples are limited, these two
methods are easily overfitted with training set, causing
performance degradation in test set. The Siamese network
makes full use of limited training samples by dataset gener-
ation strategy and separates samples from different classes
as much as possible with contrastive loss, so it suffers less
from overfitting even though training samples are limited
and is more stable in the application. Furthermore, as the
distance increases, the F1-score of all methods decreases.
Since we attach the RFID tags on the cover of the plastic
box but not the user’s hands, the RF signals are reflected
by gestures indirectly. Hence, as the distance increases, the
signals reflected by gestures become weaker, resulting in
gestures’ feature loss in RF signals. It is a bottleneck of con-
tactless wireless sensing systems. Generally speaking, RF-
Siamese outperforms the state-of-the-art solutions obviously
with different number of samples of each gesture, implying
RF-Siamese can achieve a high performance with only a few
samples.

5.8 Impact of Antenna Angles

We evaluate the performance with different antenna an-
gles. The antenna angle refers to the included angle of the
antenna and the horizontal axis. For example, when the
antenna is opposite to the user, the antenna angle is 0. We
investigate 5 antenna angles at 30cm, including 30°, 60°, 0°,
−30°, −60°. The results are shown in Fig. 18. Generally, RF-
Siamese outperforms other baselines from 1 to 5 training
samples of each gesture. With one sample of each gesture,
RF-Siamese’s average F1-score at 5 angles is 0.89, while the
F1-score of Tgt and ReActor are 0.37 and 0.36, the F1-score
of TL, PN and MN are 0.53, 0.54 and 0.56, and the scores of
MetaSense and RF-Net are 0.73 and 0.69. With five samples of
each gesture, RF-Siamese’s average F1-score is 0.99, which
is the highest among the baselines. The antenna angles do
not influence the F1-score greatly since RF-Siamese uses a
circularly polarized antenna to transmit RF signals, whose
cover area is an orb. Therefore, even though the antenna
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Fig. 16: Accuracy of the RF-Siamese and other approaches at different tag-antenna deployments.
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Fig. 17: F1-score of the RF-Siamese and other approaches at different operational distances.
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Fig. 18: F1-score of the RF-Siamese and other approaches at different antenna angles.

angle changes, the sensing area still covers users and the RF
signals can be reflected by gestures. The results indicate RF-
Siamese can adapt to environments with various antenna
angles in an efficient way.

5.9 Performance of Different Users
Users’ habits are unique when performing gestures. For
instance, some users are left-handed while others are right-
handed. Different habits cause different received signals.
Fig. 19 plots the RF-Siamese’s F1-score of 10 users at 30cm
and 0°antenna angle, and the users perform the gestures
based on their interpretation of gestures. The figure shows
that RF-Siamese outperforms the baselines even though
the F1-score of some users is lower than average. With
one training sample of each gesture, RF-Siamese’s F1-score
is 0.70 at least, and 0.93 at most, which outperforms Tgt
and ReActor by nearly 0.5, TL, PN and MN by 0.3, and
MetaSense and RF-Net by 0.2. With five training samples of
each gesture, RF-Siamese can achieve as high as 0.99 with
user 1, and the lowest F1-score is 0.90 with user 3. Note
that there is a fluctuation of F1-score in different users since
users are required to perform the gestures based on their
interpretation, and thus some gestures might be performed
ambiguously, resulting in performance fluctuation. Never-
theless, RF-Siamese reaches a higher F1-score compared
with other baselines. The results indicate RF-Siamese can
be applied to different users efficiently.

5.10 Performance of Different Environments

There are unique reflection objects in distinct environments,
resulting in the difference of received wireless signals.
Therefore, we investigate RF-Siamese in two distinct envi-
ronments, which are an open meeting room and a crowded
laboratory respectively. The meeting room represents simple
multipath environment and the laboratory represents com-
plex multipath environment since there are more reflectors
around the antennas and tag array. Note that we use data
from these two environments to train each other in transfer
learning, and we set the distance to 30cm and the antenna
angle to 0°. The F1-score in the laboratory is shown in
Fig. 20a. With one sample of each gesture, RF-Siamese’s F1-
score is 0.91, and 0.97 with five samples of each gesture.
ReActor’s F1-score is 0.35 with one sample of each gesture
and 0.79 with five samples of each gesture. Interestingly,
transfer learning’s F1-score is only 0.45 with one sample of
each gesture and 0.83 with five samples of each gesture.
It performs worse than PN and MN, whose F1-score is
0.53 and 0.50 respectively. This is because the source data
distribution is not similar to the target data distribution,
and thus the model learns harmful prior knowledge from
the data collected from the meeting room. The scores of
MetaSense and RF-Net are 0.70 and 0.68 respectively with
one sample of each gesture. As shown in Fig. 20b, RF-
Siamese achieves as high as 0.93 and 0.99 with one and
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Fig. 19: F1-score of the RF-Siamese and other approaches with different users.
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Fig. 20: F1-score in different environments: (a) F1-score in
the laboratory. (a) F1-score in the meeting room.

five samples of each gesture in the meeting room, which
outperforms ReActor by nearly 0.50 and 0.12, respectively.
Transfer learning’s F1-score is 0.53 with one sample of
each gesture, and 0.92 with five samples of each gesture.
Moreover, the F1-score of MetaSense and RF-Net are 0.72 and
0.77 respectively. The two experiments show that although
transfer learning and meta-learning have been extensively
used to handle the environment dependency problem, they
might cause degradation of models when data distribution
of source domain is dissimilar to data distribution of target
domain, and thus it is not always the best solution.

5.11 Performance with External Interference

We investigate the performance of RF-Siamese with external
interference. Specifically, we ask participants walk casually
behind the user, and the distance between participants and
the user is about 1.5 m. The number of walking people
varies from 1 to 2. Since the walking people also reflect the
RF signals, they can be regarded as external interference.
The results are shown in Fig. 21. We note that due to the
external interference, the performance of all baselines, in-
cluding RF-Siamese drops greatly. For example, the F1-score
of RF-Siamese is only 0.65 in 1-shot learning and 0.92 in 5-
shot learning. The reason is that all these approaches do not
take external interference into consideration. They mainly
focus on how to reduce training cost. Hence, when external
interference happens, the performance of these approaches
decreases. Nevertheless, RF-Siamese still reaches a relatively
high performance compared with other baselines since its
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Fig. 21: F1-score with external interference: (a) One par-
ticipant walks around the user. (a) Two Participants walk
around the user.

strong ability of extracting informative features still works
even with external features.

6 LIMITATIONS AND FUTURE WORKS

RF-Siamese realizes an accurate gesture recognition method
with only one a few samples, yet there are still some impor-
tant aspects which can be further addressed. We discuss the
limitations of RF-Siamese as follows.

Cross-environment performance. The goal of RF-Siamese
is to recognize gestures accurately with a few samples.
However, while achieving high accuracy with only a few
samples, RF-Siamese needs to retrain the model from scratch
in each environment. It does not exploit the potential knowl-
edge embedded in samples collected from other environ-
ments to further enhance the robustness and accuracy in
gesture recognition. Some works based on transfer learn-
ing [15], [20] or meta-learning [43], [44] try to reuse such
samples, but their accuracy are limited because their perfor-
mances are highly correlated with the quantity and quality
of source data. To overcome this problem, one possible so-
lution is to find domain-independent features and reuse the
features to reduce the training cost in the new environment.
In the future, we plan to combine few-shot learning and
domain-independent features to enhance the robustness and
cross-environment performance of RF-Siamese in different
environments.

Speed Variance. RF-Siamese cannot well handle very
fast/slow gestures because it uses a fixed-length sliding
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window in the current implementation. If the user performs
the gestures too fast, the length of active signals will be
shorten and thus irrelevant signals are introduced to the
sliding window. Likewise, a sliding window with fixed size
might lose active signals if user performs the gestures too
slow. An intuitive method is resizing the sliding window’s
size dynamically, however, resizing the window’s size is not
a good method in our model because we use STFT to process
the active signals, in which the size of spectrograms depends
on the length of active signals. If the size of spectrograms
changes, it will result in a failed matching of the Siamese
network. A potential method is to use NLP networks such
as Transformer since these models can deal with inputs with
various sizes.

7 CONCLUSION

We propose RF-Siamese, an RFID gesture recognition sys-
tem based on the Siamese network. RF-Siamese achieves a
high accuracy with only a few samples, which can reduce
the time cost in data collection. To adapt to RFID sensing, we
carefully devise the structure and parameters of the Siamese
network, propose a new dataset generation strategy, and
modify the Siamese network to a multi-classification model
based on template matching such that it can classify 18
gestures. We implement RF-Siamese in the real environ-
ment and conduct extensive experiments to investigate its
performance. RF-Siamese achieves an accuracy of 0.93 with
only one sample of each gesture, while the state-of-the-
art traditional method only achieves an accuracy of 0.44,
the approach based on transfer learning only achieves an
accuracy of 0.59, and two meta-learning-based approaches
achieve an accuracy of 0.7.
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