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Abstract—Gesture recognition based on radio frequency identification (RFID) has attracted much research attention in recent years.
Most existing RFID-based gesture recognition approaches use signal profile matching to distinguish different gestures, which incur
large recognition latency and fail to support real-time applications. In this paper, we design and implement ReActor, a real-time and
accurate gesture recognition system that recognizes a user’s gestures with low latency and high accuracy even when the
gestures’speed varies. ReActor combines the time-domain statistical features and the frequency-domain features to precisely
represent the signal profile corresponding to different gestures. To maintain high accuracy across different environments, we
preprocess the signals to remove reflection signals from surrounding objects and use only the signals related to gestures to train the
classifier. Moreover, we train a classifier to predict the speed of the gesture and feed the extracted features to different classifiers
according to the speed. We implement ReActor and evaluate its performance in different scenarios. Experimental results show that
ReActor achieves an average accuracy of 97.2% in recognizing 18 different gestures with an average latency of 72 ms, more than two
orders of magnitude faster than approaches based on profile template matching.

Index Terms—gesture recognition, radio frequency identification, real time, machine learning, contactless, see-through walls

1 INTRODUCTION

MART wireless sensing has emerged as an enabling

technology for many smart applications, e.g., contactless
vital signs monitoring [1], [2], novel human-machine inter-
action (HMI) [3], augmented reality (AR) [4], and ubiquitous
computing [5]-[7]. For example, wireless gesture recogni-
tion can be used to control computers without traditional in-
put devices such as keyboards and mouses [8], [9]. In many
scenarios like AR games, gesture recognition is essential to
capture user motions and map the motions to the game
scenarios [10]. Real-time and accurate gesture recognition is
also important to enable smart healthcare for elder people,
e.g., to understand their intention or to detect the fall event
of the elderly [11].

Existing gesture recognition approaches can be roughly
classified into two categories: contact-based approaches and
contactless approaches. In contact-based approaches, the
user needs to wear some dedicated devices that contain
multiple sensors (e.g., accelerometers or gyroscopes), and
the gestures are recognized by tracing the motions of these
devices [12]-[14]. In contrast, contactless approaches do not
require the users to wear such sensors and thus are more
convenient to use. The general idea of contactless gesture
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recognition approaches is to detect changes in signals (e.g.,
depths for Kinect-like systems, signal strengths or phases
for Wi-Fi and millimeter-wave systems) caused by different
gestures and distinguish them by matching the changing
patterns of the signals with some pre-defined templates [14].
Due to the convenience in use, contactless gesture recog-
nition has attracted increasing research attention in recent
years, e.g., vision-based systems like Kinect [15], wireless-
based systems [6], [16]-[19], acoustic-signal-based systems
[20], [21] and millimeter-wave-based systems [9].

Compared to other contactless gesture recognition ap-
proaches, RFID-based approaches [17], [18], [22]-[24] have
attracted increasing interest in recent years due to several
reasons. First, compared to systems based on computer
vision that can work in only bright environments [15], RFID-
based approaches can be used in pervasive environments
and provide better availability. Second, compared to ap-
proaches based on Wi-Fi signals, RFID can support simulta-
neously gesture recognition multiple users due to its ability
in distinguishing signals from different tags (users), while
multiple user differentiation remains a difficult problem in
Wi-Fi sensing [16]. Third, compared to approaches based
on acoustic-signals [20] or millimeter-wave [9], RFID-based
approaches have larger operational range (tens of feet vs.
several centimeters in acoustic-based approaches), making
them more suitable for gesture recognition in real world
scenarios that require high flexibility.

Although many RFID-based gesture recognition ap-
proaches have been proposed, however, they cannot simul-
taneously provide fine-grained and real-time gesture recogni-
tion. In a preliminary version of this work [25], we design
and implement ReActor, a gesture recognition approach
that achieved high recognition accuracy with far smaller
delay than existing works. First, ReActor can recognize fine-
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grained gestures that have only subtle differences, e.g., zoom
in and zoom out, which cannot be well distinguished in
previous works [14], [22]-[24], [26]. To this end, ReActor
fuses two types of attributes, namely the coarse-grained
statistical features of the signal profile and the wavelet co-
efficients of the signal profile that characterize fine-grained
local features. The combination of the two types of attributes
well characterizes the signal profiles related to different
gestures, which contributes to accurate gesture recognition.
Second, ReActor speeds up the recognition process by build-
ing a machine-learning-based classifier, which avoids time-
consuming template matching adopted in existing works
and significantly reduces recognition latency. The average
recognition latency of ReActor is two orders of magnitude
lower than traditional approaches based on template match-
ing (~ 50ms vs. ~10 seconds). Moreover, ReActor uses both
time-domain features and frequency-domain features and
thus achieves higher accuracy than approaches using only
time-domain features such as GRfid [17] and RF-Finger [18].

In this paper, we extend ReActor by considering two fac-
tors that might degrade the accuracy of gesture recognition
in real environments: the multi-path reflection signals from
surrounding objects in the environments and the speed of the
gesture. The multi-path signals reflected from surrounding
objects might tangle with the signal patterns caused by dif-
ferent gestures. In both ReActor and other previous works
[17], [18], the tangled signals are used to build classifiers
[18], [25] or encoded in the profile templates [17], degrading
the accuracy of the classification model when the distance
between the user and the tags increases. To address this
problem, we adopt the method developed in [27] to remove
reflection signals caused by surrounding objects to enhance
the accuracy. This not only improves recognition accuracy
when the operational range increases but also improves
the accuracy when the recognition model is used in a new
environment. Another factor that affects the recognition
accuracy of existing approaches is the speed of the gesture.
When the speed of the gesture varies, the signal profile de-
forms, making the recognition accuracy of both ReActor and
existing template-matching approaches degrade. To solve
this problem, we train a classifier to first predict the speed
of the gesture and feed the features to different classifiers
corresponding to different speeds. Because the speed of the
gesture can be predicted, this method significantly improves
the recognition accuracy when the gesture’s speed varies.
The enhanced version of ReActor is named ReActor+.

We briefly summarize the contribution of this paper as
follows.

e A real-time RFID-based gesture recognition ap-
proach named ReActor is proposed which can rec-
ognize 18 different gestures with an average latency
smaller than 100 ms, more than 100X faster than
existing works based on template matching. ReActor
fuses time-domain and frequency-domain features
and builds a classifier based on the fused features. It
significantly speeds up the gesture recognition pro-
cess by avoiding time-consuming template matching
used in existing works.

e An extension of ReActor, namely ReActor+, is pro-
posed to further improve the recognition accuracy
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when the user performs gestures at different speeds
and when the user is distant from tags. For the
former case, we train a speed classifier and feed
the data to different gesture classifiers according to
the predicted speed. For the latter case, we remove
the signals reflected by surrounding objects to obtain
clear signals related only to the gestures to improve
accuracy.

e The performance of ReActor/ReActor+ is evaluated
on 18 fine-grained gestures with commercial RFID
devices. The results show that ReActor/ReActor+
achieves a recognition accuracy higher than 0.97,
while the accuracy of existing works based on tem-
plate matching [17] or convolutional neural networks
(CNNSs) [18] is lower than 0.93 in the same setting.
Moreover, ReActor/ReActor+ significantly outper-
form existing works when used across different en-
vironments or when the user is distant from the tags.

The rest of this paper is organized as follows. In Section 2
we overview related work. The framework of the proposed
ReActor approach and its extension ReActor+ are described
in Section 3. The details of data processing, including re-
flection signal removal, gesture segmentation and feature
extraction, are given in Section 4. We also describe how
to handle the impact of varying speeds of gestures in this
section. Extensive experiments are conducted with com-
mercial RFID devices in different environments to evaluate
the performance of ReActor/ReActor+, and the results are
reported with comparison to related works in Section 5.
Finally, we give some concluding remarks in Section 6.

2 RELATED WORK
2.1 Contact-based Gesture Recognition

Early works on gesture recognition are mainly based on
wearable sensors. uWave [28] uses a single three-axis ac-
celerometer sensor to recognize personalized gestures with
high accuracy. FEMD [29] uses the Kinect sensor to classify
ten different gestures. The Magic Ring proposed in [13]
recognizes different gestures by attaching a ring to the
user’s finger. In [14] the authors propose an approach to
recognizing coarse-grained body activity of users, which
requires the users to attach some RFID readers. Femo [22]
recognizes the user’s activities during body exercise and
assesses the quality of exercise movements. ShopMiner [26]
and CBid [30] monitor the customers’ behaviors by attach-
ing RFID tags to goods in the supermarket and recognizing
different behavior patterns by tracing motions of tags. In
[31] the authors combine Kinect-based activity recognition
and RFID-based user identification to improve the qual-
ity of augmented reality applications. In [24] the authors
propose an approach to detecting the user’s coarse-grained
gesture by attaching tags to goods, which supports online
commenting of goods’ quality. IDSense [32] enables smart
interaction between the user and objects by developing an
activity detection systems based on RFID. RF-glove [33]
uses three antennas and five commercial tags affixed to the
five fingers to construct a contactless smart sensing system,
where each finger corresponds to a tag. It achieves fine-
grained classification of eight gestures. RF-Dial [34] is a
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2D human-computer interaction system that requires two
antennas and two tags attached to the object. It uses trans-
lation and rotation to track object trajectories to perform
gesture recognition. Recently, deep learning is also exploited
to recognize user’s body activities [23], [35], [36], in which
the users need to attach some sensors or RFID tags.

These approaches are contact-based and require the user
to wear or attach some sensors or RFID tags. In many
scenarios such as elderly care, it is not practical to require
the users to wear such sensors or tags. In contrast, the
approach proposed in this paper is contactless and thus is
convenient to use in practice.

2.2 Contactless Gesture Recognition

Compared with contact-based approaches that require at-
taching sensors/tags to the users, contactless gesture recog-
nition is more convenient to use and thus has attracted much
research attention in recent years. Vision-based recognition
has been widely used in augmented reality games [37], [38].
In [37] the authors develop a vision-based system named
RGBD that employs a combined RGB and depth descriptor
to classify hand gestures. In [38] the authors use deep
learning to improve the accuracy of RGBD. These vision-
based gesture recognition system can operate normally un-
der certain circumstances. When the light condition of the
environment is not good, e.g., the light is too strong or too
weak, the accuracy of vision-based gesture recognition sys-
tems significantly degrades. Recently, there are some works
on recognizing gestures based on acoustic signals [39], [40]
or millimeter-wave signals [9]. However, the operational
regions of such approaches are greatly limited, making them
not suitable for many practical applications that require
large operational ranges.

Contactless gesture recognition based on Wi-Fi signals
has attracted much research attention in recent years. Com-
pared to vision-based approaches and approaches based
on acoustic/millimeter-wave signals, Wi-Fi-based gesture
recognition has a much larger operational region and can
operate in environments without light. WiGest [41] detects
basic primitive gestures in a device-free manner. It achieves
an accuracy of 0.87 with a single AP and improves the
accuracy to 0.95 with three overhearing APs. E-eyes [42]
and ABLSTM [43] detects user’s activity at home based on
channel state information (CSI). WiFinger [44] detects fine-
grained hand gestures based on CSI changes. The essential
limitation of Wi-Fi-based gesture recognition is that it is dif-
ficult to distinguish between multiple users and thus cannot
perform multi-user gesture recognition simultaneously.

RFID-based activity recognition can leverage the inher-
ent identification ability of RFID to simultaneously track
multiple users when performing activity recognition. How-
ever, their recognition latency is usually very high because
they mainly use template matching to distinguish different
gestures and their presentation space is constrained because
the gesture must be between the antenna and the tag
[17], [18]. For example, in GRfid [17], gesture recognition
is achieved by matching the signal segment to a set of
pre-stored segment templates. This not only increases the
recognition latency but also degrades recognition accuracy
in some cases because of the weak ability of templates to de-
scribe gesture features from different users and at different
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locations. Compared with them, the approach proposed in
this paper significantly reduces recognition latency by two
orders of magnitude and achieves even higher accuracy.

2.3 Cross-environment Sensing

Most gesture recognition approaches based on wireless sig-
nals are environment-dependent, which means that a recog-
nition model trained in a environment A performs poorly
in a new environment B. The reason is that the propagation
of wireless signals are greatly affected by surrouding objects
in the environment. To address this issue, recently there are
a few works on transfering a trained recognition model to
new environment [45]-[48]. These works focus on learning
the signal mapping relationship between the environment
used to train the sensing model and the environment where
the model is used, based on which some syntetic data are
generatd to tune the model in the new environment to
improve accuracy.

In [45], the authors propose CrossSense, which is a data
roaming model based on ANN to generate synthetic Wi-
Fi signals using the source-domain’s data to retrain the
classifier in the target-domain. It leverages transfer learning
to transfer the trained ANN when the model is used in
a new environment, which can decrease the volume of
training samples to 1/4 of the original required samples.
WiTransfer [46] uses CNN network instead of ANN to
generate synthetic data for the target domain, preventing
the network from overfitting. However, if the data from the
source-domain and the target-domain do not follow a sim-
ilar distribution, these models probably generate unreliable
synthetic data. With the development of generative mod-
els such as Variational Autoencoder(VAE) and Generative
Adversarial Networks(GAN), in [47] the authors propose
a data roaming model based on VAE to generate reliable
synthetic signals for the target-domain. Because VAE is
based on Kullback-Leibler divergence, it can well measure
the difference between two data distribution and thus gen-
erate high-quality data for the target-domain. In [48] the
authors propose an unsupervised approach to achieve data
transfer. They utilize a deep adversarial network to guide
the generation of data in the target-domain by aligning the
center of the distribution in the target-domain to the center
of the distribution in the source-domain.

3 SYSTEM FRAMEWORK

In this section, we present the design of ReActor, include-
ing a hardware part used to collect data from tags and a
software part used to process the obtained data and output
the recognized gesture. We then describe the extension of
ReActor, including a reflection signal removal component
and a gesture speed classification component. We name the
extension of ReActor as ReActor+ in the rest of the paper.

3.1 The Hardware Part

The hardware part of ReActor consists of three parts: a set
of tags to sense the gesture of the user, an antenna used to
communicate with the tags and collect signals backscattered
from tags, and a laptop which is used to control the reader
(antenna) and analyze the collected signals to recognize
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Antenna

Fig. 1: The hardware part of ReActor. An RFID reader is
connected to a laptop (left), which is used to control the
antenna to collect and process data from tags (right).

different gestures. As shown in Fig. 1, we attach four Monza
AZ-9654 passive tags to the four corners of one transparent
plastic cover to sense the user’s gesture. The four tags form
a rectangle with a side-length of 40cm. The user performs
different hand gestures above the plastic cover, and the an-
tenna reads data backscattered from tags and sends the data
to the laptop for processing. Note that different deployment
strategies of tags might impact the recognition accuracy of
ReActor. We will discuss this issue in Section 5.

We use an Impinj Speedway R420 reader and a circularly
polarized Laird S9028PCR antenna to continuously interro-
gate the tags. The antenna is placed at the bottom of the
plastic box. When interrogating the tags, the reader can
report several types of information: received signal strength
(RSS), phase value, and Doppler shifts. As pointed out in
[17], the phase values are more sensitive to slight motions
than the other types of information. Thus we mainly use
the phase values to detect different gestures in ReActor.
In our experiment, the reader can interrogate tags with a
maximum throughput of about 400 readings per second.
After the reader collects data from the tags, it transmits
the data to the computer for data processing and gesture
recognition. We implement a software in Java to control the
communications between the reader and the computer.
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Fig. 2: The software framework of ReActor and its extension
ReActor+. The components marked in blue rectangles are
used in both ReActor and ReActor+, while the components
marked in red rectangles are used only in ReActor+.
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3.2 The Software Part

The workflow of ReActor’s software part is shown in Fig. 2.
It contains the following steps.

o Signal Preprocessing: The collected reflection data
contain noises and should be preprocessed before
they can be fed into gesture recognition algorithms.
In the preprocessing step, we mainly consider how
to perform phase unwrapping, phase ambiguity pro-
cessing, relfection signal removal, signal smoothing,
and signal normalization.

o Gesture Segmentation: After signal preprocessing,
the next step is to detect the signal boundaries corre-
sponding to different gestures and divide the signals
into gesture segments. This is challenging because
the boundaries of different tags might be misaligned.
We use a modified Varri method [49] to segment sig-
nals from individual tags, and propose a threshold-
based method to align boundaries of different tags.

o Attribute Extraction: With the obtained gesture seg-
mentation, we extract a set of attributes that will be
fed into machine learning algorithms for classifier
training and gesture recognition. We extract two
types of attributes to capture both coarse-grained
global feature and fine-grained local feature of each
gesture segment profile. We also perform feature
optimization to improve recognition accuracy.

e Model Training and Classification: With the at-
tributes obtained in the third step, we train a clas-
sifier model and use the model to recognize dif-
ferent gestures. We examine different classification
approaches and select the one with the highest accu-
racy. When the user performs a gesture, we first ex-
tract attributes by using the previous steps and feed
the attributes into the trained classification model to
determine the gesture type.

3.3 Extension Components in ReActor+

We extend ReActor to handle two factors that might degrade
the recognition accuracy in practical scenarios: the reflection
signals from surrounding objects in the environment and
the speed of gestures. To this end, we add three modules,
which are marked in red rectangles in Fig. 2. The details of
the added components will be given in Section 4.

e Reflection signal removal: Before preprocessing the
signals, we first remove the reflection signals from
surrounding objects in the environment to obtain
signals only caused by the user’s gesture by using
the method proposed in [27]. This will mitigate the
interference from environments and improve recog-
nition accuracy in cross-environment scenarios.

e Handling different gesture speeds: Different users
might perform the same gesture with different
speeds, which significantly affects the recognition
accuracy. To address this problem, we add two
modules in the framework, namely the speed feature
extraction and the gesture speed classifier. We train
different classification models for different speeds
and use the gesture speed classifier to predict the
speed of the gesture before feeding it to the proper
gesture classifier.
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Fig. 3: Modeling the communications between the antenna and tags: (a) the ideal case; (b) considering reflected signals
from static objects in the environment; (c) considering reflection signals from dynamic objects in the environment.

4 GESTURE SEGMENTATION AND FEATURE EX-
TRACTION

In this section, we describe in detail how to preprocess the
raw signal (Section 4.1), how to divide signal profiles into
segmentations corresponding to gestures (Section 4.2), how
to extract attributes from the signal segments (Section 4.3),
how to handle different gesture speeds (Section 4.4), and
how to select the classification model (Section 4.5).

4.1 Signal Preprocessing

The data obtained by the reader contain many noises caused
by different factors, e.g., phase wrapping and phase ambi-
guity caused by hardware imperfection of the reader and
antenna, static signals noises caused by environmental fac-
tors, and background readings. We first preprocess the raw
data to mitigate the effects of such noises before segmenting
signals for gesture segments.

4.1.1 Resolving Phase Unwrapping and Phase Ambiguity

The raw phase readings reported by the reader might be
wrapped or contain phase ambiguities [17], [50]. As shown
in Fig. 4a, phase wrapping means that the phase values
reported by the reader wraps when the actual phase ap-
proaches 0 or 27. This phenomenon occurs because the
reader usually restricts the phase value to [0, 27) [51]. Thus,
when the phase ¢(t) > 27 or ¢(t) < 0, the value reported by
the reader is actually ¢(¢f) mod 27. Phase ambiguity means
that there is an offset of 7 in some readings when compared
with near readings, which are shown as spikes in Fig. 4a.
Phase ambiguity is related to the modulation scheme used
in RFID. We use the method proposed in [51] to unwrap the
raw phase readings and use a median filter to rectify phase
ambiguity readings. The signals after phase unwrapping
and phase ambiguity resolving are shown in Fig. 4b.

4.1.2 Relfection Signal Removal

There might be multiple propagation paths for the signal to
propagate from the antenna to the tag. The signals received
at the reader are actually a linear superposition of all the
signals propagated through different paths, containing the
light-of-sight signal and the signals reflected from static or
moving objects in the environment. In gesture recognition,
because we want to capture the signal changes caused by the
user’s gestures, we should remove reflection signals from
static objects and retain only the signal reflected from the
user’s hand.
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We first consider the signal transmission between the
antenna and the tag in the ideal case, as shown in Fig. 3a.
Denote by Sy the original signal emitted by the antenna A.
The signal first propagates to tag 7; and is then backscat-
tered by the tag to the reader, where it is measured. Denote
by Sa—r, and St,_ 4 the signals received by 7; and the
backscattered signals at the antenna, respectively. Then we
have [27], [52]

Sast, =80-Gar-hast - Gr R, 1)
St,a =8Sast, - Gror-hrya-Gar, ()

where ha_,7, and hr,_, 4 are the channel responses of the
channel A — T; and the channel T; — A, respectively. Here
Ga,r, Ga,r, G1,,7, and G, R are the antenna gains at the
reader and the tag 7T; when sending and receiving signals.
When there are static objects in the environment, the
signals reflected from these objects also affect the signal
received at the reader antenna. As shown in Fig. 3b, the
signals reflected by the static objects (such as F' in the
figure) will arrive at T; and will be backscattered by the tag
together with the signal received from the reader antenna.
Denote by F all the static objects in the environment. There
are two channels along with F, including C4— r_,7, and
Ca_r_ . The channel C'4_, p_, 4 is called the self-reflection
channel, and experiments in Tadar [27] have shown that the
self-reflection channel has negligible influence on the tag’s
backscattered signals because current commercial readers
can well handle this. Thus we only consider the reflection
signals arrived at the tag, which can be expressed as

Sti4r—a = (Sast,+Sasrot) - Gror-hr,—a-Gar. (3)

When the user performs gestures, the user’s hand move-
ment introduces new reflection component of the signal
and generates new propagation paths, as shown in Fig. 3c.
Denote by M the user’s body part that moves to per-
form the gesture. There will be a new propagation channel
Canm—T,, and thus the signal received at the reader’s
antenna can be represented as

ST+ F+M—A =
(Sast, + Sasror, + Sasmor,) - Gror - hrisa - Gag.
(4)
To get the clear signal corresponding to the user’s ges-
ture, we subtract Eq. (3) from Eq. (4), and get
Sgesture - STH—F-{-M—)A - STH—F—)A, (5)

where St, 4 p+am—a and S, 4, 4 can be estimated by us-
ing the RSS values and the phase values measured when the
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Fig. 4: Signal preprocessing of ReActor: (a) the phase of the signals backscattered from four tags; (b) the data after
phase unwrapping and phase ambiguity resolving; (c) the data after outlier filtering and smoothing; (d) the data after

normalization to [-1,1].

user performs the gesture and when there are no user in the
environment, respectively. Take St, 1 py p— 4 as an example.
Denote by RSS and 6 the measured signal strength value
and the phase value when the user performs the gesture,
respectively. Then St, py v 4 can be estimated as

0

ST 4+ FrM—A R e’ ; (6)
where
a = 10V 1000 @)

With this method, the interference signals reflected from
static objects can be effectively removed and the signals re-
flected from moving objects are retained, which correspond
to the user’s gestures. Fig. 5 shows an instance of the signal
removal, where the raw phase measurements are shown
in Fig. 5a and the phase values after removing reflection
signals from static objects are shown in Fig. 5b.

Reflect signal

time(s)

(a) Raw Data

time(s)

(b) Reflector Data

Fig. 5: Reflection signal removal in ReActor+: (a) the raw
phase readings obtained from four tags; (b) the phase
readins after removing reflection signals from static objects.

4.1.3 Data Filtering and Smoothing

There are still some noisy readings caused by environmental
factors after phase unwrapping. To smooth the data and
filter out such noisy readings, we apply the Savitzky-Golay
(S-G) filter [53] to the data after phase unwrapping. The S-
G filter is a method based on local polynomial least square
fitting in the time domain. It has been widely used in data
stream smoothing and denoising because it can preserve the
shape and width of the raw signal after filtering out noises.
The data after applying the S-G filter are shown in Fig. 4c.
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4.1.4 Signal Normalization

To make the signal changes caused by gestures more ?sig-
nificant and ease gesture segmentation, we normalize the
signals to mitigate the effect of background readings, e.g.,
those readings seem “flat” in Fig. 4c. For this purpose, we
use the normalization method proposed in [54] to map the
filtered data to a range of [—1, 1]. The signal normalization
can magnify the signal changes caused by gestures and
meanwhile suppress the impact of background signals by
mapping them to values around zero.

The normalization process is as follows. For a given tag,
we use {¢1,...,¢n} to denote its phase readings, where
n is the number of total readings. For the i-th reading ¢;
(1 < i < n), the normalized value is calculated as

5={ G o n20 ®)
s 4 <0

where ¢, ¢pmaz, and @pin are the mean value, maximum
value, and minimum value of all the phase readings of this
tag, respectively. Fig. 4d shows the data after normalization.
Compared with Fig. 4c, it is apparent the signal changes
caused by gestures are magnified and the background sig-
nals are suppressed.

4.2 Gesture Segmentation

After obtaining the normalized data, the next step is to ex-
tract signal segments related to gestures. This is a challeng-
ing task [17]. If we use a loose boundary, some background
signals (e.g., those signals whose values are around zero
in Fig. 4d) might be included in the resulted gesture seg-
ments. In contrast, if we use a very stringent boundary, then
some signals related to the gesture might be excluded from
the resulted gesture segments. In both cases, the gesture
recognition accuracy might be degraded. Fortunately, our
approach mainly uses statistics of the signals to perform
gesture recognition and thus is more tolerant to gesture
segmentation errors than DTW-based approaches [17], [18].

The gesture segmentation stage consists of three steps.
First, we obtain the boundaries of signals for individual
tags. Second, we combine the boundaries of different tags
to obtain the boundary of the gesture. Third, there might
be some exceptional cases in which the boundaries of some
specific tags are apart from the boundaries of the other tags,
and we should handle such exceptions to avoid segmenta-
tion errors.
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4.2.1 Boundary Detection for Individual Tags

We employ a modified Varri method [49] to get boundaries
of signals for individual tags. The method uses a sliding
window that combines amplitude measurement and fre-
quency measurement of the signal. Denote by L the length
of the sliding window. The amplitude measurement and the
frequency measurement of the ¢-th window is calculated as

L
Ai =" |kl ©)
k=1

and

L
Fi= ik — dik-1l, (10)
k=1

where ¢; ; denotes the k-th data point in the i-th sliding
window. The measurement difference function G is defined
as

G(i) = CalAix1 — Ail + Cx| Fip1 — Fil, (11)

where C4 and Cr are two application-dependent coeffi-
cients, whose values are experimentally set as C4 = 7 and
Cr = 1. The local maxima (above a predefined threshold) of
the G function indicates the boundaries of gesture segments
in the signal [49].

The length of the sliding window, namely L, affects
both the calculation efficiency of G and the segmentation
accuracy. Different from [17] that adopts a genetic algorithm
to dynamically determine the value of L, in ReActor+ we
use a fixed value of L. The reason that we can use a fixed
L is that our approach uses statistics rather than detailed
data points, and thus it can tolerant slight boundary shifts
caused by different L. Moreover, by using a fixed L we
can avoid searching for different L with time-consuming
genetic algorithms. The value of L is experimentally set as
following. Denoting by Tp the duration of a gesture and
by R the mean sampling rate of tags, we set L = T * R.
In our experiments, the signal fluctuation duration caused
by a gesture is usually less than 1.5 seconds, and the mean
sampling rate for each tag is around 40 readings per second.
Thus we set L = 60. Experimental results show that this
setting can ensure that all signal fluctuations caused by
gestures can be captured while only a few background
signals would be included in the gesture segmentation.

Fig. 6a shows the boundaries detected for four tags. It
can be observed that for each tag the signals between corre-
sponding boundaries capture the signal fluctuation caused
by the gesture. However, because the reader interrogates
different tags at different times, the boundaries of different
tags are not aligned. We should fuse the boundaries of
different tags to get a unified segment for the gesture.

4.2.2 Gesture Boundary Detection

After the boundaries of individual tag signals are obtained,
we get the boundary of the gesture as follows. Denote by m
the number of tags, and denote by B; ; and B, ; the left and
right boundary of the j-th (1 < 57 < m) tag, respectively.
Then the boundary of the gesture is calculated as

BG; =min{B; ;} and BG, = max{B,;}, 1 <j <m.
(12)
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Fig. 6b shows the obtained boundaries of the gesture. It can
be observed that the fluctuated signals caused by the gesture
are well included in the obtained gesture segmentation.
Meanwhile, most of the background signals are excluded
from the obtained gesture segmentation.

4.2.3 Handling Exceptional Cases

In some exceptional cases, the boundaries of some specific
tags might be apart from the boundaries of the other tags.
For example, it might be the case that one tag is obstructed
by the user’s arm when she performs the gesture. In such
cases, the sampling rate of this tag would be very low and
it cannot correctly reflect the signal changes caused by the
gesture. For example, as shown in Fig. 6¢, the boundaries of
the bottom right tag are distant from the boundaries of the
other tags. If we still use Eq. (12) to determine the boundary
of the gesture in such cases, the obtained gesture segments
might contain a lot of background signals.

We propose a threshold-based approach to handle such
exceptional cases. We calculate the distances between the
most left boundary and the second most left boundary
among all tags. If the distance is larger than a threshold, we
use the second most left boundary as the starting point of
the gesture segment. Similarly, if the distance between the
most right boundary and the second most right boundary
is larger than a threshold, we use the second-most right
boundary as the ending point of the gesture segment. De-
note by

BG; = min{{B; ;} \ {BGi}} (13)

and

BG, = max{{B;} \ {BG,}}. (14)

If BG, — BG) > §;, we set BG] as the starting point of
the gesture segment. Similarly, if BG, — BG. > ¢,, we use
BG! as the ending point of the gesture segment. In other
cases, we still use BG; and BG, calculated by Eq. (12)
as boundaries of the gesture segment. We experimentally
set 6 = —1 and 6, = 1, which indicates that the four
boundaries of time offset values are less than 1s.

Fig. 6d shows the gesture segmentation obtained with
our exception handling approach. It can be observed that the
effect of the misaligned tag readings is effectively mitigated.

4.3 Attributes Extraction

We extract two types of attributes for each gesture segment:
coarse-grained statistical attributes that characterize global
features of the segment profile and fine-grained wavelet
decomposition coefficient attributes that can preserve local
features of the segment profile.

4.3.1 Statistical Attributes

The statistical attributes can characterize the global profile
feature of gesture segments. We consider three kinds of
statistical attributes:

o Attributes that reflect the central tendency of the
data in the gesture segment, including the mode, the
median, the first quartile, the third quartile, and the
arithmetic mean.
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Fig. 6: Gesture segmentation in ReActor: (a) boundaries of individual tags in a normal case; (b) boundary of the gesture in
a normal case; (c) boundaries of individual tags in an exceptional case; (d) boundary of the gesture in an exceptional case.
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o Attributes that reflect the distribution shape of data,
including the kurtosis and the skewness.
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down (DN), left (LF), right (RG), zoom in (Z1), zoom out (ZO),
push (PH), pull (PL), circle clockwise (CC), circle anticlockwise
(CA), left-right (LR), right-left (RL), up-down (UD), down-
Mp (DU)’ knOCk twice (KT)’ enlarge (EN)' and Shrink (SH) KT 0.000.000.000.000.000.000.000.000.00 0.00 0.00 0.00 0.00 0.00 0.00 g¥E[]0.00 0.00|
The normalized Confusion matrix Of ClaSSifying different EN +0.000.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00{¢(2320.11
gestures with 4 tags is shown in Fig. 7. We can observe SH 10.000.000.000.000.000.000.000.000.000.00 0.0 0.00 0.00 0.00 0.00 0.00 0.0 [
that the recognition accuracy of 6 gestures (UP, DN, LF, DU,
KT and SH) can reach 1, but the recognition accuracy of
the other gestures are all lower than 0.9. The recognition
accuracy of CA (0.40) and LR (0.50) are the lowest among all  Fig. 7: Normalized confusion matrix when using only statis-
the gestures. The reason is that the signal profiles of these tical features for gesture recognition.

gestures have rich local features that cannot be fully charac-
terized by the statistical attributes. The overall classification
accuracy in Fig. 7 is 0.85.
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low frequency coefficients are used as attributes in ReActor+
to perform gesture recognition.

Data interpolation: The number of wavelet coefficients
of a signal sequence is related to the number of data in the
sequence. Due to the randomness in the communications
between the reader and tags, the number of phase readings
for different tags might be different. Thus, before calculating
the wavelet coefficients of signal sequences of different tags,
we interpolate the signal of all the tags to make in the same
length. Denote the time related to the starting boundary of
the gesture by T, and denote the time related to the ending
boundary of the gesture by T.. We create a series of time
points T; (0 <7 < 100) as

4.3.2 Wavelet Decomposition Coefficient Attributes

Using mere statistical attributes, ReActor+ cannot accurately
recognize gestures like CA and LR whose signal profiles
have rich local features. To capture the fine-grained local
features of gesture profiles, we apply wavelet decomposi-
tion to the signal profile of gestures and use the wavelet
coefficients as attributes to distinguish different gestures.
Wavelet coefficient calculation: We use the Daubechies
wavelet (dbN) [55] as the wavelet base to decompose the
signal profile of each gesture gesture. Note that similar as

in extracting statistical attributes, we decompose signals re- o . T, T
lated to different tags and concatenate attributes of different Li=T+ixAT, AT = 100 - (16)
tags. We use discrete wavelet transformation to reduce the  We use linear interpolation to calculate the phase values on
redundancy of wavelet transform coefficients: these time points, and use the interpolated data to calculate

1 t—7 the wavelet coefficients.

¢a,r(t) = ﬁw( ),(a#0,beR) (15) After obtaining the wavelet coefficients, we combine
) both statistical attributes and wavelet coefficient attributes
where a = a (ap > 1, 7 € Z) are discretized scale asinput to perform gesture recognition. The level of wavelet

parameters and b = kajby (by > 0, k € Z) are discretized decomposition has slight impact on the recognition accu-
translation parameters. Both high frequency coefficients and  racy. Fig. 9 shows the recognition accuracy when different
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Fig. 8: Normalized confusion matrix when using both statis-
tics attributes and wavelet decomposition coefficients for
gesture recognition.
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wavelet decomposition.

level of decomposition is used. It can be observed that the
accuracy is the highest when level 3 decomposition is used,
and thus we use coefficients related to level 3 decomposition
in the rest of this paper. The normalized confusion matrix
of using the combined attribute set to perform gesture
recognition is shown in Fig. 8. We can observe that the
recognition accuracy of most gestures are higher than 0.90
except CC, which is 0.89.

4.4 Handling Varing Gesture Speed

In practical scenarios, the same gesture might be performed
with different speeds, either for the same user or for differ-
ent users. When the user performs gestures with a speed
different from the training gesture, the recognition accuray
significantly degrades. We conducted some experiments
to validate this speculation. In the experiment, the user
performs the same gesture with three different speeds: (a)
normal speed, for which the user performs one gesture with
about 1~2 seconds; (b) slow speed, for which the user per-
forms one gesture with about 1.5X time of the normal speed;
(c) fast speed, for which the user completes the gesture with
about 0.5X time of the normal speed. TABLE 1 shows the
performance of ReActor when the training speed and the
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test speed are different. It can be observed that the accuracy
degrades significantly when the training speed does not
match with the testing speed. The recognition accuracy is
close to random guessing when the testing speed does not
match the training speed.

TABLE 1: Accuracy of ReActor/GRfid when using different
speeds in training and testing.

Train-Slow  Train-Nomal Train-Fast
Test-Slow 0.913/0.811 0.212/0.367  0.146/0.144
Test-Nomal  0.247/0.383 0.938/0.833  0.312/0.294
Test-Fast 0.146/0.172 0.257/0.294  0.836/0.656

We propose a two-stage approach to address this prob-
lem. First, we train different gesture classifier for different
speeds. In our case, we train three different classifiers by
using samples collected at three different speeds, namely
slow, normal, and fast. As shown in Fig. 10a, before feeding
the extracted features to the gesture classifier, we first train
a speed classifier to predict the speed of the gesture. Besides
the statistical features (Section 4.3.1), we also use the du-
ration of the gesture as one additional feature to train the
speed classifier, which is calculated as

L = BG, — BG, (17)

where BG, and BG; are the time point of the right bound-
ary and the left boundary of the gesture segment, respec-
tively. We train the speed classifier with the RandomForest
algorithm, and the accuracy in recognizing different speed
of the gesture is higher than 0.99, as shown in Fig. 10b.

Normalized confusion matrix
Samples

t - -

AR

| Slow Gesture | | Normal Gesture | |

Fast Gesture
Classifier Classifier

Classifier

Slow Normal Fast

(b)

Fig. 10: (a) Diagram of handling gesture speed; (b) Normal-
ized confusion matrix of different gesture speed recognition.

(@)

4.5 Classification Model Selection

We test 8 classification models, including one CNN-based
model as used in [18] and 7 traditional machine learning ap-
proaches, namely RandomPForest, 1-NN, J48, Random Tree,
Naive Bayesian, Logistic, and KStar. Note that for the CNN
model, we use the raw signal as input. For other models,
we use the combined feature set proposed in this paper as
input. For the sake of fairness, we adopt the structure of
network and use default parameter settings used in [17].
The accuracy and latency of different models are listed
in TABLE 2. It can be observed that RandomForest achieves
the highest accuracy (0.965) and its latency is also small.
Some models, e.g. Logistic, achieves comparative accuracy
as RandomForest but are much slower. The CNN-based
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method is slower than RandomForest and the accuracy is
also lower (0.878 vs 0.965). Thus, in this paper we select the
RandomPForest approach as the default classification model.

TABLE 2: Performance of different classification models.

Classification Models Accuracy Latency
RandomForest 0.965 Small
1-NN 0.946 Small
J48 0.870 Small
Random Tree 0.819 Small
Naive Bayesian 0.813 Small
Logistic 0.954 Large
KStar 0.884 Large
CNN [18] 0.878 Small

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of ReActor
and compare it with the state-of-the-art approaches. We
implement ReActor/ReActor+ with Matlab and run the
software on a personal computer with Intel(R) Core(TM) i5-
7500 CPU @ 3.40 GHz and 8G memory. The reader collects
phase values with the antenna transmitting power set at
20dBm. The frequency is set at 920.625MHz and the default
mode of the reader is set to the MaxThroughput mode. When
implementing GRfid for comparison, we use 10 profile tem-
plates for each gesture. We use the function implementation
of DTW provided by Matlab to implement GRfid.

In the experiments, we consider 18 different gestures
(as shown in Fig. 12) and evaluate the performance in two
environments as shown in Fig. 11. Ten users are invited to
participate in the experiments. The users perform each ges-
tures 20 times based on their own interpretation of gestures
without guidelines from the authors. For each experiment,
we randomly select 70% of samples to train the model and
use the rest 30% of samples to test the model. The results
are averaged over 10 independent experiments.

5.1 Experiment Setting

The hardware setting is shown in Fig. 1. We paste the tags
to a transparent cover of a 53cm*39cm*32cm plastic box and
put the antenna at the bottom of the box. The user performs
different gestures above the plastic cover, and a laptop is
used to control one Impinj R420 reader to send commands
to the antenna and record the RSS values and phase values
received at the antennal.
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When evaluating the performance of different ap-
proaches, we consider the following factors:

e Number of tags: We attach a different number of tags
(3~8) to the cover to investigate how the number of
tags affects the accuracy of different approaches. The
tags are evenly deployed on the cover. In the default
setting, we attach four tags to the cover.

o Gesture speed: We consider three different gesture
speeds, normal, slow, and fast. The duration of a nor-
mal gesture is about 1~2 seconds, while the duration
of a fast/slow gesture is about 0.5X shorter/longer
than the normal speed case.

o Operational distance: We test the performance of dif-
ferent approaches when the distance between the
user’s hand and the tags changes. We consider 6
distances, from 20cm to 220cm stepped by 40cm. The
default distance is 20cm.

e Number of readings: When there are multiple users in
the environment, the number of readings for each
tag would be reduced due to collisions among tags.
We investigate the impact of the number of readings
that can be obtained for each tag on the accuracy of
different approaches.

Besides these factors, we also investigate the perfor-
mance of ReActor/ReActor+ when it is used across different
environments and the impact of interference caused by
nearby moving persons.

5.2

The recognition accuracy of different approaches with dif-
ferent number of tags is plotted in Fig. 13. It can be observed
that both ReActor and ReActor+ achieve higher accuracy
when more tags are used. ReActor+ achieves higher ac-
curacy than ReActor because it eliminates interference re-
flection signals from static objects in the environment, but
the performance gap becomes smaller when the number
of tags increases. ReActor+ always achieves a recognition
accuracy higher than 0.95 in all the cases. In contrast,
the recognition of ReActor is lower than 0.95 when the
tag number is smaller than 4. When the number of tags
increases, the accuracy of GRfid first improves and then
slightly drops. It achieves slightly higher accuracy than
ReActor when there are less than four tags, but performs
worse than ReActor when there are more tags. The reasons
might be as follows. When there are more tags, ReActor can
better tolerate noises in signals because it uses a machine-
learning-based algorithm to build the classifier. In contrast,
GRfid uses a template-matching method to find the best
matching template and it is affected more by the noise
readings. To summarize, all the three approaches achieve
recognition accuracy higher than 0.9 in most cases, but
ReActor+ consistently outperforms ReActor and GRfid.

Impact of Tag Number

5.3 Recognition Latency

The time complexity of the basic DTW algorithm is O(M =
N), where M and N are the length of the two data series
for which the DTW distance is calculated. To make fair
comparisons with GRfid, besides the basic DTW, we also im-
plemented an improved version of DTW named FastDTW
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Fig. 12: The 18 gestures used in evaluation.
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Fig. 13: Gesture recognition accuracy with different number
of tags.

[56], whose time complexity is reduced to O(maxz (N, M))
and find the the optimal solution in most cases but without
guarantee. Fig. 14 plots the recognition latency of ReAc-
tor/ReActor+ and GRfid using DTW and FastDTW, respec-
tively. We select 90 gesture instances, 5 instances for gesture
listed in Fig. 12. Here we define the recognition latency as
the time needed to output the result after the gesture are
performed and the corresponding data are collected, which
include both the time spent in signal processing and the time
spent in gesture matching (for GRfid) or gesture recognition
(for ReActor/ReActor+). For GRfid, we construct 10 profile
templates for each gesture.

As shown in Fig. 14, the recognition latency of GRfid
using DTW and FastDTW is usually longer than 65 and
25 seconds respectively, while the recognition latency of
ReActor is smaller than 100 ms in most cases. Compared
with GRfid, ReActor reduces recognition latency by two
orders of magnitude. The average recognition latency in
ReActor is only 72.2 ms, while the average recognition
latency of GRfid using DTW and FastDTW is 70.81 seconds
and 25.94 seconds respectively. Thus, ReActor can support
applications that require real-time gesture recognition. Note
that time spent in removing reflection signals in ReActor+
is negligible because it uses only simple calculations.

Here we give an analysis on the runtime complexity of
ReActor and GRfid. Denote by N the length of each segment
profile (assume that all the segment profiles are of the same
length), by K the number of templates for each gesture in
GRfid, and by P the number of gestures. For GRfid, it needs
to compare the testing segment profile to all the templates of
all the gestures, thus its complexity is O(P % K x N?). When
fastDTW [56] is used, the time complexity is O(P * K * N).
The runtime of ReActor is dominated by the time spent in
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extracting features from the raw signals.! Both the statistical
features and the wavelet coefficients can be calculated in
O(N) time [57]. Thus, the time complexity of ReActor is
much lower than approaches based on DTW or its variants.
For example, if we consider 18 gestures and for each gesture
we use 10 templates, then in GRfid each segment need to
compare with 18¥10=180 templates. The time spent in each
comparison is on the same magnitude as the time spent
in ReActor. We should clarify that there might be many
parameters in RandomForest, however these parameters
need to be trained once, which does not affect the latency
that occurs in the testing phase.

We also investigate the latency incurred in different
stages of ReActor and plot corresponding values in Fig. 15.
It can be observed that the most time-consuming stages in
ReActor are gesture segmentation and wavelet decomposi-
tion, both of which take about 20ms. In contrast, each DTW-
based template matching in GRfid takes more than 100ms
and it needs to perform 180 comparisons in our experiment
setting. Thus, the execution time of ReActor is much shorter
than approaches based on template matching.

© ReActor o ReActor+ © GRfid-DTW - GRfid-|
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Fig. 14: Recognition latency of ReActor, ReActor+, and GR-
fid for 90 gesture instances, 5 instances for each gesture.
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Fig. 15: Execution time in different stage of ReAc-
tor/ReActor+.

5.4 Effectiveness of Features

TABLE 3: Accuracy with different features.

CNN
0.878

ReActor
0.928

ReActor+
0.947

Accuracy

1. The runtime complexity of RandomForest is only related to the
depth of the tree. Actually, RandomForest is usually considered more
time-efficient than other machine learning algorithms.
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To evaluate the effectiveness of feature sets proposed in
this paper, we compare the features extracted in ReActor
with the features extracted with convolutional neural net-
works (CNN) as in [18]. The results are listed in TABLE 3.
The results show that with the features extracted from the
CNN model, the accuracy is 0.878, which is about 5 percent
lower than the accuracy of ReActor. Because the interference
from surrounding objects are mitigated, ReActor+ further
improves the accuracy by 2 percent. The results indicate
that the features extracted in ReActor/ReActor+ are more
effective than the features extracted by CNN.

5.5

The recognition accuracy of ReActor, ReActor+, and GRfid
when the gesture speed changes are shown in Fig. 16. Note
that for fair comparison, we collect templates for three dif-
ferent speeds for GRfid and compare to all the templates at
different speeds when finding the most matched template.
This significantly improves the accuracy of GRfid. GRfid’s
accuracy when only normal speed templates are used is
listed in TABLE 1.

ReActor/ReActor+ achieves higher accuracy than GRfid
when the speed of the gesture is not known a prior because
it uses a speed classifier to determine the speed of the ges-
ture before feeding it to the proper classifier. We randomly
select 270 instances at different speeds and use ReActor+
to classify them. Because the speed classifier can judge the
speed of gestures with very high accuracy, the recognition
accuracy is 0.93, 0.95, and 0.90 for gestures at slow speed,
normal speed, and fast speed, respectively. In contrast, if
we mix samples collected at different speeds and use the
mixed samples to train a classifier, the recognition accuracy
is lower than 0.8. GRfid shows high tolerance to the varying
speed of the gesture because DTW can handle the profile
deformation to some extent. However, after applying the
two-stage approach, ReActor achieves higher accuracy than
GRfid, especially for the slow gestures and fast gestures,
with an improvement factor of about 5 percent.

Impact of Gesture Speed
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Fig. 16: Recognition accuracy with different gesture speeds.

5.6

We test the resistance of ReActor and ReActor+ to interfer-
ences from other moving people when the user performs
gestures. To generate interference, we let several people
walk behind the antenna during the experiment. The recog-
nition accuracy of the three approaches is show in Fig. 17.

Impact of Interference
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The recognition accuracy of ReActor and ReActor+ is in-
sensitve to interferences from moving persons: its accuracy
remains higher than 0.95 even when four people move
around the user during the gesture operation. ReActor+
performs slightly better than ReActor because it can remove
interference signals from static objects in the environment.
In contrast, the recognition accuracy of GRfid significantly
degrades when the number of interfering person increases.
When there are 4 moving people, the recognition accuracy
of GRfid drops to 0.63. These results are consistent with the
results reported in [17].

I ReActor + I ReActor [_JGRfid ||

=
T

o o o
> o ™
T T T

Recognition Accuracy
o
N

o

Number of Person

Fig. 17: Impact of moving person.

5.7 Impact of Operational Distance

The performance of ReActor and GRfid at different op-
erational distances are plotted in Fig. 18. The operational
distance is the distance between the user’s hand and the
plastic cover. It can be observed that from 20cm to 220cm,
ReActor+’s recognition accuracy is higher than GRfid, es-
pecially at 140cm, at which distance the performance gap
achieves 18 percent. The recognition accuracy of ReActor
degrades only slightly as the distance increases, but the
accuracy of GRfid degrades significantly. The reason might
be as follows. When the distance between the user’s hand
and the tags increases, the pattern changes caused by the
user’s gesture become insignificant. In this case, it might be
not easy for GRfid to find the proper matching template.
In contrast, because ReActor uses statistical features, the
tendency of the profile in both time-domain and frequency-
domain is less impacted by the distance. When the distance
increases, compared with ReActor, the accuracy of ReActor+
remains more stable.
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Fig. 18: Recognition accuracy of ReActor/ReActor+ and
GRfid at different operational distances.
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Fig. 19: Recognition accuracy of ReActor and GRfid at
different antenna view angles.

5.8

We investigate the performance of different approaches with
various antenna view angles. The antenna view angle indi-
cates the angle between the antenna and the horizontal axis.
Specifically, we let users perform gestures with 5 different
antenna view angles, including —7/6, —7/3, 0, 7/6, /3,
and evaluate the performance of different approaches at
each angle. The results are plotted in Fig. 19. It can be
observed that when the angle is 7/6 or —m/6, the accuracy
of the three approaches slightly decreases. When the angle
is m/3e or —7/3, the accuracy is nearly the same as when
the user is in front of the antenna. These results show that
different angles have only very limited impact on accuracy.
The reason might be that we use omni-directional circularly
polarized antennas in our experiments, for which the tags
can be interrogated in a large region, and thus different
angles will not impact the signal profiles significantly.

Impact of Antenna View Angle

5.9

When there are multiple users, the number of RSS/phase
readings of a user will be reduced because RFID read-
ers use a time-division method to collect data from tags.
We evaluated the performance of ReActor when the data
volume decreases and plot the result in Fig. 20. In our
default setting, the reader can interrogate tags at about
400 readings per second, e.g., 100 readings per second for
each tag. The accuracy corresponding to 1/n in the plot
means that only 1/n data randomly selected from all the
collected data are used in recognizing the gestures, which
mimics the case in which n users simultaneously perform
the gesture. It can be observed that for both ReActor and
GRfid, the recognition accuracy degrades when fewer data
are used, but the performance of ReActor is more stable than
GRfid. The accuracy of GRfid drops to below 0.85 when
only 1/3 or fewer data are used. In contrast, the accuracy of
ReActor and ReActor+ remains higher than 0.9 even when
only 1/5 data are used. The reason is that when the number
of data points in the gesture segmentation decreases, it is
more difficult for DTW-based algorithms to find the correct
template. In contrast, ReActor and ReActor+ use statistical
features that are more resistant to the number of data points.
It worth noting that ReActor performs slightly better than
ReActor+ when fewer data are used. It might be because
when fewer data are available, the reflection signals cannot

Impact of Data Volume
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be correctly removed, which slightly decreases the accuracy
of ReActor+.

[N
T

(I ReA ctor + I ReActor _]GRfid| |

Recognition Accuracy
o o o
o )] [e")

o
N

o

1/2 1/3 1/4
Data Volume

Fig. 20: Recognition accuracy of different approaches when
the data volume are reduced.

5.10 Performance of Different Users

We also evaluate the accuracy of different approaches for
different users. We recruit 10 users to test the accuracy for
different individuals, and plot the results in Fig. 21. The
accuracy for different users is different, showing up to about
10 percent difference for different users (user 4 vs. user
8). For 9 users out of the 10 users, ReActor+ significantly
outperforms GRfid. Only for user 5 and user 7, GRfid
achieves very slightly higher accuracy than ReActor+.

o o o o

Recognition Accuracy
o N D O

Fig. 21: Recognition accuracy of ReActor/ReActor+ and
GRfid for different users.

5.11

We evaluate the cross-environment performance of different
approaches by training the classifier with data collected in
one environment and test the trained classifier in another
environment. To this end, we collect two datasets from
two different rooms, which are denoted as sl and s2 in
Fig. 11, and train the model using one dataset and test
the model using another dataset. The results are plotted in
Fig. 22. The notation A — B in the figure means we train the
classifier with data collected in environment A and test it in
environment B, where A, B € {s1, s2}.

It can be observed that when the training environment
and the testing environment are the same, all the three
approaches show fairly high recognition accuracy. However,
when the training environment and testing environment are
different, the accuracy of ReActor and GRfid significantly
drops to below 0.45 and 0.24, respectively. The reason is that
in both approaches the noise signals caused by static objects
in the environments are encoded in the classifier. In contrast,

Cross-Environment Performance
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ReActor+ removes the interference signals reflected from
static objects in the environment and thus effectively mit-
igates the negative effects of background signals. The cross-
environment accuracy of ReActor+ remains higher than 0.75
in both s1 — 52 and 52 — s1 cases.
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Fig. 22: Accuracy of different approaches when used across
different environments.

6 CONCLUSION

In this paper, we propose a real-time and accurate hand
gesture recognition system called ReActor. Compared with
state-of-the-art approaches, ReActor reduces recognition la-
tency by two orders of magnitude and achieves similar
or even higher recognition accuracy. With the recognition
latency lower than 100 ms, ReActor is able to support real-
time applications. We further extend ReActor from two
aspects. First, we remove reflection signals from surround-
ing static objects in the environment, which boosts its per-
formance when used in cross-environment cases. Second,
we propose a two-stage approach to handle the impact of
varying speeds, which improves the accuracy when the
speed of the gesture is not known prior. However, there
are still spaces to improve ReActor, especially when there
are multiple users simultaneously perform the gesture in
the environment, which will make the data very sparse and
cause inter-tag interference. We consider addressing these
problems as our future work.
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